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An Optimum Lower Bound for the Weights of

Maximum Weight Matching in Bipartite Graphs
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Abstract

The problem of computing a maximum weight matching in a bi-
partite graph is one of the fundamental algorithmic problems that
has played an important role in the development of combinatorial
optimization and algorithmics. Let Gw,σ is a collection of all weighted
bipartite graphs, each having σ and w as the size of each of the
non-empty subset of the vertex partition and the total weight of the
graph, respectively. We give a tight lower bound dw−σ

σ e + 1 for the
set {Wt(mwm(G)) | G ∈ Gw,σ} which denotes the collection of weights
of maximum weight bipartite matchings of all the graphs in Gw,σ.

Keywords: Bipartite graph, Maximum weight bipartite matching,
Lower bound for weights of bipartite matching, Combinatorial opti-
mization, String matching.

1 Introduction

We use the notations N and N0 to denote the sets of positive and non-negative
integers, respectively. All the graphs considered in this paper are simple,
undirected and connected. Let G = (V = V1 ∪ V2, E,Wt) be a weighted
bipartite graph where V1 and V2 are two disjoint independent non-empty
subsets of the vertex set V of G, and each edge in the edge set E of G

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License

1Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi
- 221005, Uttar Pradesh, India, E-mail: shib.iitm@gmail.com, shibsankar@bhu.ac.in

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/


26 Shibsankar Das

connects a vertex in V1 to a vertex in V2, with positive integer weight given
by the weight function Wt: E → N. Let the total weight of G be denoted
by w and is defined by w = Wt(G) =

∑
e∈E Wt(e). For uniformity, let us

treat an unweighted graph as a weighted graph having unit weight for all of
its edges.

We use an unordered pair notation {u, v} for an edge e ∈ E joining the
two vertices u ∈ V1 and v ∈ V2, and its weight is denoted by Wt(e) = Wt(u, v).
Further, an edge e = {u, v} is said to be incident on the vertices u and v,
and the vertices u and v are each said to be incident to e. Two vertices
u, v ∈ V of G are adjacent in G if there exists an edge e = {u, v} ∈ E of G
to which both vertices are incident. Two edges e1, e2 ∈ E of G are adjacent
if there exists a vertex v ∈ V to which they are both incidents on [4].

1.1 Basics of Maximum Weight Bipartite Matching

A subset M ⊆ E of edges of a graph G is a matching of G if no two edges of M
share a common vertex. A vertex v ∈ V is said to be covered or matched by
the matching M if it is incident to an edge of M ; otherwise, v is unmatched [3].
A matching M of G is called a Maximum (Cardinality) Matching (MCM) if
there does not exist any other matching of G with greater cardinality. We
denote such matching by mm(G). The weight of a matching M is defined
as Wt(M) =

∑
e∈M Wt(e). A matching M of G is a Maximum Weight

Matching (MWM), denoted as mwm(G), if Wt(M) ≥ Wt(M ′) for every
other matching M ′ of the graph G. Observe that if G is an unweighted
graph then a mwm(G) is a mm(G), which we write as mwm(G) = mm(G)
in short and its weight is given by Wt(mwm(G)) = |mm(G)|. Similarly, if G
is an undirected and weighted graph with Wt(e) = c for all edges e in G
and c is a constant then also we have mwm(G) = mm(G) with the weight of
the matching as Wt(mwm(G)) = c ∗ |mm(G)|. Given a bipartite graph G,
the Maximum Weight Bipartite Matching (MWBM) problem computes a
MWM of G.

The problem of MWBM is a well-studied key problem in combinato-
rial optimization and algorithmics, and has a wide range of applications
(see textbooks [13, 16]). Several algorithms have been proposed for com-
puting MWBM, improving both theoretical and practical running times.
A complexity survey of some of the well known exact algorithms for the
MWBM problem is summarized in [6]. Moreover, several randomized and
approximate algorithms are also proposed to solve this problem, see for
example [8, 15].
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A peek through similar research papers in this field suggests that most
existing works focus on the lower bounds for the size of the matching rather
than the weight of the matching in graphs. For example, lower bounds on the
size of maximum matchings are studied in graphs with small maximum degree
and 3-connected planar graphs [2,14], connected k-regular (k ≥ 3) graphs of
order n [11], hypergraphs of rank three [12], subcubic graphs [9], etc.

1.2 Our Contribution

In this paper, we give a tight lower bound for the weights of MWBM in
bipartite graphs having fixed weight and vertex size. Let Gw,σ is the collection
of all weighted bipartite graphs, each of whose weight is w and σ is the size of
each of the two non-empty subsets of the vertex partition. The set of weights
of MWBM of the graphs in Gw,σ is denoted by {Wt(mwm(G)) | G ∈ Gw,σ}.
We prove that dw−σσ e + 1 is a lower bound of {Wt(mwm(G)) | G ∈ Gw,σ}
and this bound is optimum.

This result can be applied to develop optical packet switches to transform
data center scalability [1]. It is also applicable to the area of stringology [7,10].
An equivalent result (see Lemma 3.13 in [5]) of this outcome is applied for
enumerating the error classes (see Theorem 3.14 in [5]) in the approximate
parameterized string matching. Besides, this finding may be applied in any
kind of communication network.

1.3 Roadmap

The rest of the paper is organized as follows. In Section 2, we partition the
class of graphs in Gw,σ into two subclasses and provide a tight lower bound
for the weights of MWBM of graphs in each of the subclasses of Gw,σ. A
summary is given in Section 3.

2 A Tight Lower Bound for the Weights of
Maximum Weight Bipartite Matching in Gw,σ

Let Gw,σ denotes the collection of all weighted bipartite graphs, each of whose
total weight is fixed to w and σ is the size of each of the two non-empty
subsets of the vertex partition of any graph in Gw,σ. Let us assume that ΣP
and ΣT are the pair of non-empty subsets of the vertex set of each of the
bipartite graphs in Gw,σ. Therefore, |ΣP | = |ΣT | = σ.
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We now define two partition classes Gw≥σ and Gw<σ based on the
relation between the fixed values w and σ. They are as follows.

Gw≥σ ≡ {G = (ΣP∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |, w = Wt(G), and w ≥ σ}

and

Gw<σ ≡ {G = (ΣP∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |, w = Wt(G), and w < σ}.

Observe that based on the above construction we can redefine Gw,σ as

Gw,σ =

{
Gw≥σ, if w ≥ σ.
Gw<σ, if w < σ.

Now we prove that the value of minG∈Gw,σ{Wt(mwm(G))}, which de-
notes the minimum weight among the maximum weight bipartite matchings
of all the graphs in Gw,σ, is dw−σσ e+ 1.

Let us first prove it for Gw≥σ. Since w ≥ σ, we can always write the
term w as qσ + r for some q, r ∈ N0, where 0 < r ≤ σ. First, we show
the existence of bipartite graph G ∈ Gw≥σ such that Wt(mwm(G)) = q + 1.
We then prove in Theorem 2 that q + 1 is the tight lower bound of the set
{Wt(mwm(G)) | G ∈ Gw≥σ}.

Theorem 1 Let Gw≥σ = {G = (ΣP ∪ ΣT , E,Wt) | σ = |ΣP | = |ΣT |, w =
Wt(G) and w ≥ σ}. If w = qσ + r for some non-negative integers q and r
where 0 < r ≤ σ, then there exists a bipartite graph G ∈ Gw≥σ such that
Wt(mwm(G)) = q + 1.

Proof: For the case q = 0, we have w = qσ + r = r = σ as 0 < r ≤ σ and
w ≥ σ. Figure 1(a) shows a bipartite graph G′ = (ΣP ∪ΣT , E′,Wt) ∈ Gw≥σ
for this case. The weight of the graph is Wt(G′) = σ. In this graph G′,
Wt(mwm(G′)) = 1 = q + 1.

For q ≥ 1, the total weight of any bipartite graph in Gw≥σ is w = qσ+ r.
We produce such a bipartite graph G′′ ∈ Gw≥σ as shown in Figure 1(b) with
Wt(mwm(G′′)) = q + 1. 2

Observe that in a weighted graph G, any edge e of weight c ∈ N can
be thought of as c number of overlapping unit weight edges. Similarly,
increasing the weight of a bipartite graph G by adding a weight c ∈ N is
equivalent to adding c unit weight edges in G. Without loss of generality, we
assume these as a convention while incrementing weight in a weighted graph.
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Figure 1: Existence of bipartite graph G ∈ Gw≥σ, such that Wt(mwm(G)) =
q + 1 where w = qσ + r for some q, r ∈ N0 and 0 < r ≤ σ. (a) An
example of bipartite graph G′ ∈ Gw≥σ for the case q = 0. (b) An example
of bipartite graph G′′ ∈ Gw≥σ for the case q ≥ 1. In both graphs, the thick
edge represents a maximum weight matching edge.

Theorem 2 (Tight Lower Bound for the Weights of MWBMs) Let
Gw≥σ = {G = (ΣP ∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |, w = Wt(G) and w ≥ σ}.
Then

min
G∈Gw≥σ

{Wt(mwm(G))} = q + 1

where w = qσ + r for some non-negative integers q and r, and 0 < r ≤ σ.

Proof: For σ = 1, the statement is trivially true. So we consider σ ≥ 2
and prove the statement minG∈Gw≥σ{Wt(mwm(G))} = q + 1 by using the
principle of mathematical induction on q ∈ N0. Let ΣP = {u1, u2, . . . , uσ}
and ΣT = {v1, v2, . . . , vσ} are the disjoint vertex sets of the graphs in Gw≥σ.
For simplicity, we denote Gq+1 = Gw≥σ when w = qσ + r for some q, r ∈ N0

where 0 < r ≤ σ, that is, q = dw−σσ e where q is represented as a function of
w and σ only.

Base Step: Let q = 0. Then w = r = σ because 0 < r ≤ σ and w ≥ σ, and

G1 = {G = (ΣP ∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |,Wt(G) = σ}.

Since for any graph G = (ΣP ∪ΣT , E,Wt) ∈ G1, |ΣP | = |ΣT | = σ and
Wt(G) = σ, therefore minG∈G1{Wt(mwm(G))} = 1 = q + 1.
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Induction Hypothesis: Assume that for q = i, minG∈Gi+1{Wt(mwm(G))}
= i+ 1, where

w = iσ + r, and

Gi+1 = {G = (ΣP ∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |,
Wt(G) = iσ + r}.

Let G′i+1 = {G ∈ Gi+1 | Wt(mwm(G)) = i + 1}. The set G′i+1 is
non-empty by Theorem 1. We use this set in the following inductive
step.

Inductive Step: Let q = i+1. We have to prove minG∈Gi+2{Wt(mwm(G))}
= i+ 2, where

w = (i+ 1)σ + r, and

Gi+2 = {G = (ΣP ∪ΣT , E,Wt) | σ = |ΣP | = |ΣT |,
Wt(G) = (i+ 1)σ + r}.

The existence of a graph G ∈ Gi+2 with Wt(mwm(G)) = i+ 2 is shown
in Theorem 1. Therefore, we only have to prove that there does not
exist any graph in Gi+2 whose weight of a maximum weight matching
is i+ 1. Let us prove it by contradiction. Suppose there exists a graph
G∗ ∈ Gi+2 such that Wt(mwm(G∗)) = i+ 1.

Observe that, for any graph in Gi+2, its weight is equal to w =
(i + 1)σ + r = (iσ + r) + σ. Therefore, any graph in Gi+2 is gen-
erated by adding a total of σ weight to the non-negative weight edges
of a graph in Gi+1.

Therefore, G∗ can only be constructed from a graph in G′i+1 by adding
a total of σ weight to the non-negative weight edges of that graph
in G′i+1; because for all G ∈ Gi+1 \ G′i+1, Wt(mwm(G)) > i + 1. Let
Σ = {e1, e2, e3, . . .} is the edges, where σ =

∑
ei∈Σ Wt(ei), whose

weights are increased in G ∈ G′i+1 to build G∗.

Case 1: Let G ∈ G′i+1 and M = mwm(G). If there exists at least one
edge e in Σ such that e ∈M or if both end points of e are unmatched
vertices, then let M ′ = M ∪ {e}, which is a weighted matching of G∗,
not necessarily of maximum weight. Therefore

Wt(mwm(G∗)) ≥Wt(M ′) = Wt(M) + Wt(e) = i+ 1 + Wt(e) > i+ 1



An OLB for the Weights of MWM in Bipartite Graphs 31

which is a contradiction because we assumed that Wt(mwm(G∗)) =
i+ 1.

Note: Hence for the rest of the cases, we assume that none of the edges
in Σ, which are added in G ∈ G′i+1 to get the G∗ ∈ Gi+2, belongs to M ;
or both end points of none of the edges in Σ are unmatched vertices.
Therefore if e = {u, v} ∈ Σ, then: (a) u is an unmatched vertex and v
is a matched vertex or vice versa, or (b) both u and v are matched
vertices, but e /∈M = mwm(G).

Case 2: Let there exists at least one edge e = {u, v} ∈ Σ such that
Wt(e) = wσ ≥ 2. Then we have the following two sub-cases which are
shown in Figure 2. Let G ∈ G′i+1 and M = mwm(G).

(a) (b)

Wt(u′, v) = z1
u′ v

u v′
e

Wt(e) = w1

Wt(u, v′) = z2

Wt(u′, v) = z1
u′ v

u

e
Wt(e) = w1

Figure 2: (a) This graph gives a pictorial representation of the Sub-case 2(a)
in Theorem 2. (b) Sketch of the graph considered in Sub-case 2(b) is shown
here. In both graphs, the thick edges are maximum weight matching edges.

Sub-case 2(a): Assume that u and v be the unmatched and matched
vertices in G ∈ G′i+1, respectively. So there exists an edge e′ =
{u′, v} ∈M which is incident on the matched vertex v. Let Wt(e′) =
Wt(u′, v) = z1 and Wt(e) = Wt(u, v) = w1 in the G. Therefore
z1 ≥ w1. Now add the edge e (or increase the edge weight of e) in G
where Wt(e) = wσ ≥ 2 in order to generate G∗ ∈ Gi+2 such that
Wt(mwm(G∗)) = i+ 1.

If z1 < w1 + wσ, then let

M ′ = M \ {e′} ∪ {e}
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which is a weighted matching of G∗. Hence

Wt(mwm(G∗)) ≥Wt(M ′)

= Wt(M)− z1 + w1 + wσ

= (i+ 1)− z1 + w1 + wσ

> i+ 1

which is a contradiction.

Or else,
z1 ≥ w1 + wσ ⇔ z1 − 1 ≥ w1 + (wσ − 1).

Therefore we can construct a new graph G′ from G by decreasing one
unit weight of the edge e′ = {u′, v} ∈ M and increasing the weight
of the edge e = {u, v} /∈M by one unit in G. As a consequence, the
weight of G′ remains the same as that of G ∈ G′i+1 and so G′ ∈ Gi+1.
But

Wt(mwm(G′)) = i < Wt(M) = i+ 1

contradicting the induction hypothesis that minG∈Gi+1{Wt(mwm(G))}
= i+ 1.

Sub-case 2(b): Suppose both u and v are matched vertices but e =
{u, v} /∈M . See Figure 2(b). So there exist two edges e′ = {u′, v} ∈M
and e′′ = {u, v′} ∈ M which are incident on the matched vertices v
and u, respectively. Let Wt(e′) = z1, Wt(e′′) = z2 and Wt(e) = w1 in
G ∈ G′i+1.

So, z1 + z2 ≥ w1 in G.

Now after adding the edge e in G with Wt(e) = wσ ≥ 2, if

z1 + z2 < w1 + wσ,

then let
M ′ = M \ {e′, e′′} ∪ {e}

which is a weighted matching of G∗. Hence

Wt(mwm(G∗)) ≥Wt(M ′)

= Wt(M)− z1 − z2 + w1 + wσ

= (i+ 1)− z1 − z2 + w1 + wσ

> i+ 1
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which is a contradiction.

Or else,

z1 + z2 ≥ w1 + wσ ⇔ (z1 − 1) + z2 ≥ w1 + (wσ − 1).

Therefore we can construct a new graph G′ from G by reducing one
unit weight of the edge e′ = {u′, v} ∈M and adding one unit weight
to the edge e = {u, v} /∈M of G. As a consequence, the weight of G′

is the same as that of G ∈ G′i+1 and so G′ ∈ Gi+1. But

Wt(mwm(G′)) = i < Wt(M) = i+ 1

which contradicts the hypothesis that minG∈Gi+1{Wt(mwm(G))} =
i+ 1.

Case 3: Let for each edge e ∈ Σ, Wt(e) = 1. Consider Σ = {e1 =
{u1, v1}, e2 = {u2, v2}, . . . , eσ = {uσ, vσ}} and their respective weights
in G ∈ G′i+1 are given by {w1, w2, . . . , wσ}. We add these σ number
of edges of Σ in G ∈ G′i+1 to produce a graph G∗ ∈ Gi+2 such that
Wt(mwm(G∗)) = i+ 1. Further let M = mwm(G).

Therefore, there must exist two edges in Σ which are not adjacent.
Because if not, then all the edges of Σ are adjacent to one vertex.
Without loss of generality, suppose u1 = u2 = · · · = uσ. See Figure 3
and consider the following two possibilities.

(a) If u1 ∈ ΣP is an unmatched vertex in G ∈ G′i+1, then there must
be another unmatched vertex in ΣT of the graph G, because
σ = |ΣP | = |ΣT |. Say the unmatched vertex is v1 ∈ ΣT . If we
add an edge {u1, v1} ∈ Σ in G ∈ G′i+1, then this kind of graph is
already addressed in Case 1. Therefore, at most σ − 1 number of
edges of unit weight can be added in G while generating the G∗.
This is a contradiction.

(b) Similarly, if u1 ∈ ΣP is a matched vertex in G ∈ G′i+1, then there
must be another matched vertex in ΣT of the graph G. The rest
of the argument is similar to the previous unmatched case.

So we assume the two non-adjacent edges be e1, e2 ∈ Σ. Then a maxi-
mum of four edges in M is adjacent to edges e1, e2 ∈ Σ. Let e′1, e

′
2, e
′
3, e
′
4
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Figure 3: There must exist two edges e1, e2 ∈ Σ such that e1 and e2 are not
adjacent. This kind of graph does not arise in Case 3 of Theorem 2.

are such edges and z1, z2, z3, z4 are their corresponding weights in
G ∈ G′i+1, respectively. Therefore,

z1 + z2 + z3 + z4 ≥ w1 + w2 in G.

Now after adding σ edges of Σ in G, if

z1 + z2 + z3 + z4 < w1 + w2 + 2,

then let
M ′ = M \ {e′1, e′2, e′3, e′4} ∪ {e1, e2}

which is a weighted matching of G∗. Hence

Wt(mwm(G∗)) ≥Wt(M ′)

= Wt(M)− (z1 + z2 + z3 + z4) + (w1 + w2 + 2)

> i+ 1

which is a contradiction.

Or else,

z1 + z2 + z3 + z4 ≥ w1 + w2 + 2

⇔ z1 + z2 + z3 + z4 − 1 ≥ w1 + w2 + 1.
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As a consequence, by similar argument as stated in Sub-case 2(b), we
can construct a new graph G′ whose weight is the same as that of
G ∈ G′i+1 and therefore G′ ∈ Gi+1. But

Wt(mwm(G′)) = i < Wt(M) = i+ 1

contradicting the induction hypothesis that minG∈Gi+1{Wt(mwm(G))}
= i+ 1.

This completes the proof. 2

An equivalent statement of Theorem 2 is the following.

Corollary 1 For the partition class Gw≥σ ≡ {G = (ΣP ∪ ΣT , E,Wt) |
σ = |ΣP | = |ΣT |, w = Wt(G) and w ≥ σ}

min
G∈Gw≥σ

{Wt(mwm(G))} =
⌈w − σ

σ

⌉
+ 1.

Proof: Since w ≥ σ, we can always write w as qσ + r for some q, r ∈ N0

where 0 < r ≤ σ. Then the term dw−σσ e can be written as⌈w − σ
σ

⌉
=

⌈qσ + r − σ
σ

⌉
=

⌈(q − 1)σ + r

σ

⌉
= (q − 1) + 1 = q.

Hence the statement in this corollary is equivalent to Theorem 2. 2

The following theorem is for the partition class of graphs in Gw<σ. The

proof is trivial. Note that for 0 < w < σ, the term
⌈
w−σ
σ

⌉
+ 1 = 1.

Theorem 3 For the partition class Gw<σ ≡ {G = (ΣP ∪ΣT , E,Wt) | σ =
|ΣP | = |ΣT |, w = Wt(G) and w < σ}

min
G∈Gw<σ

{Wt(mwm(G))} = 1.

3 Conclusion

In this paper, we have given a tight lower bound dw−σσ e+1 for the weights of
maximum weight matching of the bipartite graphs each having fixed weight
as w and the size of each of the two non-empty subsets of the vertex partition
as σ. The above finding may be applied in stringology, monitoring computer
networks, computer vision, pattern recognition, compiler design with cloud
architecture and telecommunication network to minimize the cost, time with
the least traffic load and critical path routing.
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