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Abstract

We designed a new SVM for microRNA identification,
whose novelty is two-folded: firstly many of its features in-
corporate the base-pairing probabilities provided by Mc-
Caskill’s algorithm, and secondly the classification perfor-
mance is improved by using a certain similarity (“profile”-
based) measure between the training and test microRNAs
and a set of carefully chosen (“pivot”) RNA sequences.
Comparisons with some of the best existing SVMs for mi-
croRNA identification prove that our SVM obtains truly
competitive results.

Topical keywords: bioinformatics, molecular sequence
classification, tools and methods for computational biology.

Contact author: Liviu Ciortuz (ciortuz@info.uaic.ro).

Availability: The source code of our system and
the datasets we used can be found at the address
www.info.uaic.ro/∼ciortuz/yasmir.

Results:

We compared our approach to the Triplet-SVM classi-
fier, after training our SVM on the same dataset as Triplet-
SVM. The training set included 163 human pre-miRNAs
from miRBase registry version 5.0 and 168 pseudo pre-
miRNA like hairpins as negative examples. A 5-fold cross-
validation accuracy of 96.07% was obtained on this training
set. On the test datasets created by the authors of Triplet-
SVM, our SVM obtained significantly higher prediction re-
sults.

Then we made comparative tests with the miPred clas-
sifier, the best SVM-based miRNA classifier up to our
knowledge. Here, the training set included 200 human
pre-miRNAs from miRBase version 8.2 as positive exam-
ples, and 400 pseudo pre-miRNA hairpins as negative ex-
amples. We obtained at 5-fold cross-validation an accu-
racy of 93.66% on this training set, compared to miPred’s
93.50%. Running the same tests as miPred, our SVM ob-
tained similar and sometimes significantly better specificity
than miPred. Compared to miPred, one of the advantages of

our approach is that it makes no use of so-called normalised
features which are based on sequence shuffling; in turn it
enables the feature computation in our approach to be much
less time consuming.

We also checked whether the Random Forests machine
learning algorithm is able to obtain comparable results to
SVM (as suggested by MiPred, another SVM for miRNA
recognition) when using our set of features. While on many
test datasets that we used the answer was positive, the over-
all conclusion is that RF is not a good enough candidate to
replace SVM for pre-miRNA identification using our set of
features.

Note: This is a revised and substantially extended ver-
sion of the paper “Using Base Pairing Probabilities for
MiRNA Recognition” by Daniel Pasailă, Irina Mohorianu,
and Liviu Ciortuz, that has been published in Proceedings
of The International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC) 2008 ,
IEEE Computer Society, pp. 519-525 [25]. The contribu-
tions added here are: the evaluation of the effect of using
probabilistic patterns instead of non-probabilistic ones, the
analysis of the discriminative power of different categories
of features we used, testing our classifier on a more recent
version of miRBase (12.0), and the automatic search for
good pivot RNA sequences, which are critical for classi-
fication in our approach.

1 Introduction

MicroRNAs (miRNAs) are short RNA molecules that
play important gene regulatory roles [11]. It is well known
that most miRNA precursors (pre-miRNAs) fold as hair-
pins, however many other RNA sequences in different
genomes have a similar structure. Several methods have
been proposed for miRNA recognition, among which sup-
port vector machines (SVMs) are generally seen as the best
ones [9] [10]. Most of these SVMs for miRNA identifica-
tion rely on the accuracy of the best RNA secondary struc-
ture provided by one of the available prediction programs,
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for instanceRNAfoldfrom the RNA Vienna package [16].
We will describe another approach, also using the SVM
classifier, for which most of the features are computed using
the base-pair binding probabilities provided by McCaskill’s
algorithm [20], based on thermodynamics principles. Such
an approach seems promising because it does not rely on a
single, predicted secondary structure. We prove this claim
through direct comparisons with two other SVMs, namely
Triplet-SVM [31] and miPred [24], the last of which has re-
ported best results for pre-miRNA identification up to our
knowledge.

The plan of this paper is as follows: Section 2 presents
the biological background of the miRNAs and introduces
the reader to previous work in the area of identifying new
pre-miRNAs using machine learning techniques, especially
support vector machines. Section 3 defines the features that
we will use for building up a new SVM, while Section 4 will
give the main results we obtained on different test datasets,
and will compare them to (some of) the best results avail-
able in the literature. Section 5 will analyse the contribution
of different categories of features that we employ towards
discriminating between different classes of RNA sequences.
Section 6 reports the results that we obtained when trying to
find out whether another classifier, namely Random Forests,
is capable of delivering better results than SVM when using
the features presented in Section 3. The same section also
documents our effort towards automatic identification of the
special (“pivot”) features that we use for miRNA discrim-
ination. Section 7 draws the conclusions of our work and
sketches some improvements that we plan to do in the fu-
ture.

2 Background

MicroRNAs (miRNAs) are non-coding RNA molecules
that regulate gene expression at post-transcriptional level.
First, miRNAs are transcribed from DNA asprimary miR-
NAs. Then the Microprocessor complex, containing the nu-
clease Drosha, when interacting with a primary miRNAs
cuts it down to a short hairpin, or stem-loop structure, that
is calledprecursor miRNA(pre-miRNA), and has 70−100
nucleotides. Later, pre-miRNAs are processed tomature
miRNAs(21-23 nucleotides) in the cytoplasm, by interac-
tion with the Dicer enzyme. Figure 1 (parta) illustrates
the structure of human precursory miRNAhsa-let-7a-2, that
has been proved to be a good indicator in cases of adenocar-
cinoma, a malignancy of the mucous glands in the lungs.

Bioinformatics methods can successfully be used for
identifying of new microRNA genes in genomes. The
miRNA identification problem is usually defined over pre-
miRNAs because their length is larger than that of mature
miRNAs, and therefore more information can be extracted
from their sequences. Because pre-miRNAs usually have a
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i : 1 2 3 6 7 8 9 10 11 12 14

PF[i, 0] : .54 .98 1 .96 .99 1 .01 1 1 .99 .99

15 16 17 18 19 20 21 22 23 24 25 26

1 1 1 1 1 1 1 1 1 1 .92 .87

27 28 29 30 31 32 33 34 35 36 37 38

.17 .22 .10 .01 .06 .56 .32 .01 .50 .22 .32 .31

i : 33 34 35 37 38 39 40 41 42 43 44 45

PF[i, 1] : .01 .01 .08 .01 .01 .01 .04 .46 .14 .26 .47 .31

46 47 48 49 50 51 52 53 54 55 56 57 58

.33 .51 .94 .99 1 1 1 1 1 1 1 1 1

59 60 62 63 64 65 66 67 68 69 70 71 72

1 .99 .99 1 .99 .01 1 1 .96 .01 .92 1 .60

Figure 1. a. The human pre-miRNAhsa-let-7a-2and
its stem-loop structure. The mature miRNA is shaded.b.

The two tables give the non-null components of the “pro-
file” arraysPF[i, 0] and respectivelyPF[i, 1] computed for
the hsa-let-7a-2pre-miRNA using base-pairing probabili-
ties (see Section 3.2).

stem-loop structure, but many other RNA sequences in dif-
ferent genomes have a similar structure, the real challengeis
to differentiate real pre-miRNAs from other hairpin-shaped
RNA sequences, the latter ones being usually called pseudo
pre-miRNAs.

The first bioinformatics attempts to miRNA identifica-
tion used sequence alignment systems like BLASTN [2].
Because pre-miRNAs often have non-conserved sequences,
and instead they tend to conserve their secondary structure,
the approach based on sequence comparison is not very
promising. Therefore the focus turned on using machine
learning (ML) techniques, with a clear preference toward
support vector machines, a very good classification tool.

Some of the precursors of ML-based systems for miRNA
identification were: miRScan [19] that worked on theC.
elegansand H. sapiensgenomes, miRseeker [18] onD.
melanogaster, and miRfinder [5] onA. thaliana and O.
sativa.

For classification based on ML techniques, a feature vec-
tor is extracted from the RNA sequence. The selected fea-
tures are usually statistical, structural, topological and ther-
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modynamical. Since 2005 an impressive number of SVM-
systems have been built, aiming to get better and better re-
sults in recognizing miRNAs. The first two of these sys-
tems, miR-abela [28] and Triplet-SVM [31] proved very
inspiring. MiR-abela’s authors have shown that their SVM-
based predictions were really valuable to biologists: it
turned out through laboratory work that about 30% of the
proposed candidates were real pre-miRNAs. Triplet-SVM
instead was remarkable due to its simplicity: the features
employed are patterns over words of 3 consecutive nu-
cleotides in the pre-miRNA sequence. These patterns gather
informations from the first and secondary structure levels of
the sequence.

Two other systems were basically derived from Triplet-
SVM’s approach: MiPred [24], and miREncoding [33].
MiPred added a couple of thermodynamical features (mini-
mum free energy MFE, and the so-called P-value [12]), and
then succeeded to get better results by replacing SVM with
Random Forests, an ensemble learning technique using de-
cision trees. MiREncoding added several new features and
tried to improve SVM’s classification performances by us-
ing DFL, a feature selection algorithm.

Another SVM, RNAmicro [15], tried to explore similar-
ities provided by multiple alignments of related miRNAs.
The paper [14] describes an SVM called Microprocessor
that identifies the Drosha cutting site in the extended pri-
mary miRNA sequence, and then uses informations regard-
ing this site to improve the performance of another SVM in
charge with pre-miRNA recognition.

Finally, an SVM called miPred [24] produced what
seems to be the best results up to date, by making extensive
use of thermodynamical features.1 The miPred system uses
so-called normalised features, which are computed on a
large number of shuffled versions of the given pre-miRNAs.
However, this approach is not very welcome by biologists
due to its lack of biological meaning. At the same time,
working with normalised features is computationally very
time consuming.2 One of our aims when we started this
work was to produce results comparable to those of miPred,
without using normalised features.

All SVMs for miRNA recognition use an RNA sec-
ondary structure prediction program, and then compute dif-
ferent features based on the model predicted by this pro-
gram. As stated in [21], this approach is limited by the sec-

1The reader should not confuse the two miRNA identification systems
that have very similar names: MiPred, cited above, and miPred which has
been introduced before.

2Supplementary materials published on the web for miPred [24] says
that it uses 10,000 shuffled versions for each (real or pseudo) pre-miRNA.
It is therefore expected that computing the features for our SVM, when us-
ing 100 pivots (see Section 3.2) will be around 100 times faster. Real time
comparisons are even more compelling: computing miPred featuresusing
only 100 shufflings took about 130 times more time using the miPred’s
source code (mostly written in Perl), than computing yasMiR features (in
C) for the same set of pre-miRNAs.

ondary structure prediction accuracy. Therefore, a classi-
fication system relying on a probabilistic model that takes
into account all possible secondary structures of a given
RNA is expected to deliver better results compared to those
obtained when using features based on a single predicted
structure. The present work follows this lead.

Before concluding this section we mention several non-
SVM machine learning systems for miRNA identification:
BayesMIRfinder [32] was based on the naive Bayes clas-
sifier, and proMIR [22] used a Hidden Markov Model. A
more recent paper [29] reports on using thek-NN clustering
algorithm to learn how to distinguish between different cat-
egories of non-coding RNAs, while another one [30] intro-
duces MiRank, a system that uses a ranking algorithm based
on random walks, a stochastic process defined on weighted
finite state graphs.

3 Our SVM: yasMiR

We propose a novel support vector machine, henceforth
called yasMiR, built mainly upon features using the base-
pair binding probabilities provided by McCaskill’s algo-
rithm [20], supplemented with some other, simple features.
The subsection 3.1 will give the formal definition of base-
pairing probabilities as introduced in [12], while the subse-
quent subsections will present our SVM’s features. There
will be several categories of features as summarized in Ta-
ble 1: profile similarity scores against “pivot” RNA se-
quences (subsection 3.2), means of probabilistic triplet pat-
terns (subsection 3.3), and finally other probabilistic and
non-probabilistic features (subsections 3.4 and 3.5).

3.1 Base-pairing probabilities

Given an RNA sequence, the probability that the nu-
cleotides on positionsi and j form a base-pair is defined
as follows:

pij =
∑

Sα∈S

P (Sα) δα
ij

whereS is the set of all possible secondary structures for
the given sequence, andδα

ij is 1 if the nucleotidesi andj
form a base-pair in the structureSα and0 otherwise. The
probability of the structureSα ∈ S follows a Boltzmann
distribution:

P (Sα) =
e−MFEα / (R·T )

Z

where

MFEα is the folding minimum free energy ofSα,

Z =
∑

Sα∈ S e−MFEα / (R·T ),

R = 8.31451 J mol−1K−1 (a molar gas constant), and
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A - alignment scores against pivot sequences, n
wheren is the number of pivots used

B - the probabilistic mean for the number of occur-32
rences for each triplet pattern

- the mean base-pairing distance 1
- the overall non base-pairing probability 1
- the non-pairing probability for each nucleotide4

C - the sum of pairing probabilities for each pair 10
of nucleotidesa andb
- the folding minimum free energy (MFE) 1
- dinucleotide frequencies 16
- the average frequency for each nucleotide 4

Table 1. Categories of features for yasMiR SVM. The
rightmost column gives the number of features in the re-
spective subcategory.

T = 310.15K (37◦ C).

The probabilitiespij are efficiently computed using Mc-
Caskill’s algorithm [20].

3.2 A base-pairing profile similarity mea-
sure, and related features

We use the idea introduced in [21] for computing a sim-
ilarity measure for two RNA sequences based on their pat-
tern of base-pairing formation. To compute this similarity
score, two steps are needed: first, a base-pairprofile is cal-
culated for each of the two RNA sequences, and then the
similarity scorefor the two resulting profiles is obtained
by adapting the global alignment algorithm Needleman-
Wunsch [23], using a modified match score and zero gap
penalty.

Given a pre-miRNA sequence of lengthL and the base
pairing (McCaskill) probabilities, we compute for every nu-
cleotidei three probabilities: the first is the probability ofi
forming a base pairing upstream, the second− downstream,
and the third− for not forming a base pairing at all. Thus,
we obtain aprofile for the given sequence, under the form
of anL × 3 matrix defined as follows:

PF[i, 0] =
∑

j>i

pij

PF[i, 1] =
∑

j<i

pij

PF[i, 2] = 1 − PF[i, 0] − PF[i, 1]

As an exemplification, Figure 1b shows the base-pairing
profile of hsa-let-7a-2. The global alignment of two such

profiles is calculated using the Needleman-Wunsch algo-
rithm. We use zero gap penalties, and as match score the
inner product of the corresponding two columns in the pro-
files of the given RNA sequences. Here is the recurrence
relation:

S[i, j] = max







S[i − 1, j]
S[i, j − 1]

S[i−1, j−1] +
∑2

k=0 PF[i, k] · PF[j, k].

The algorithm computes the best alignment score of the pro-
files computed for the given pair of RNA sequences.

We will now show how this similarity measure will be
used to compute a number ofprofile-based featuresfor our
SVM. First, we will construct a set of RNA sequences that
we call pivot sequences. Then, the alignment scores of a
given (training or testing) pre-miRNA with each one of the
pivot sequences will be included in the pre-miRNA’s fea-
ture vector. We conjecture that the way in which the pre-
miRNA base-pairing profiles align to the profiles of pivot
sequences can be successfully used as a discriminative fac-
tor in classifying real vs. pseudo pre-miRNAs. In the devel-
oping phase of our system, we used pseudo-miRNAs and
pre-miRNAs as pivots, but then we saw that the prediction
accuracy didn’t significantly change — it even slightly im-
proved — when we used randomly generated sequences.
Also, we noticed that about 50−200 pivot sequences were
needed to achieve best performance. The length of the used
pivot sequences seemed to affect the classification results.
We noticed that in practice sequences of 45-65 nucleotides
were most appropriate.

3.3 Local contiguous structure-sequence
probabilistic features

The Triplet-SVM [31] classifier used quite successfully
a set of 32 local sequence features for pre-miRNA iden-
tification. It employed theRNAfold function for the sec-
ondary structure prediction. Then features were computed
by counting certain patterns on triplets of nucleotides in the
given pre-miRNA sequence. For yasMiR we also used the
patterns proposed there, but instead of only relying on the
structure predicted byRNAfold, we worked with probabili-
ties provided by McCaskill’s algorithm.

In the secondary structure of RNAs, each nucleotide is
either paired or unpaired. LetPNP[i] = PF[i, 2] store the
probability that base on positioni is unpaired. For any 3
consecutive nucleotides there are8 = 23 possible structure
patterns: ‘ppp’, ‘pp.’, ‘p.p’, ‘.pp’, ‘p..’, ‘.p.’, ‘..p’, and ‘...’.
Here, ‘p’ denotes a paired nucleotide, and ‘.’ an unpaired
one. The reader is referred to Figure 1a for the exempli-
fication of such an annotation of RNA secondary structure.
Further on, if we consider the middle nucleotide (A,C,G or
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U ) in a triplet, there will be32 = 8 × 4 possible combina-
tions. Given a pre-miRNA, we will compute the probability
of every such combination occurring inside the sequence.

First, we compute a two-dimensional matrixPt[2..(L−
1), 1..8] wherePt[i, j] stores the probability that the triplet
centered on thei-th nucleotide has the patternj. Making
an obvious independence assumption,Pt(i, j) can be easily
computed by multiplying the probabilities that correspond
to the three positions inside that pattern. For example, the
probability computed for the pattern ‘p.p’ for somei is (1−
PNP[i−1]) · PNP[i] · (1−PNP[i + 1]).

After having computed the matrixPt, it is easy to
calculate the two-dimensional matrixPn[1..4, 1..8] where
Pn[a, j] denotes the probability that nucleotidea appears in
the middle position of occurrences of patternj, inside the
given sequenceS[1..L]:

Pn[a, j] = (
∑

S[i]=a

Pt[i, j] ) / L.

ThePn[a, j] values are included in the feature vector we as-
sociate to a given pre-miRNA sequence. These 32 features
are a natural generalisation to the structure-sequence fea-
tures defined for Triplet-SVM, now using base-pair binding
(McCaskill) probabilities.

3.4 Other features using base-pairing
probabilities

The overall non base-pairing probabilitywas included
in the yasMiR’s feature vector. This value is given by:

L
∑

i=1

PNP[i]/L.

The output of themeanbp dist function in the Vienna
RNA package was also used as a feature. This value rep-
resents the mean base pair distance in the equilibrium state
of a given RNA, which constitutes a measure of its struc-
tural diversity. It is also computed using the probabilities
obtained by McCaskill’s algorithm.

We also computed the non base-pairing probability for
every nucleotidea ∈ {A,C,G,U} in the following way:

∑

S[i]=a

PNP[i]/cnt(a).

wherecnt(a) denotes the number of nucleotides of typea
in the sequenceS.

For every pair of nucleotidesa andb we computed the
sum of the base-pair probabilities for all the corresponding
positions in the sequence. There are in total 10 such com-
binations, since(a, b) and(a, b) count as only one pair and
the casea = b is allowed. We used the following formula:

∑

S[i]=a,S[j]=b

pij .

3.5 Other features

As features not based on McCaskill’s probabilities we
first added the foldingminimum free energy. This was ob-
tained using thefold function in the Vienna RNA package,
which is based on Zuker’s algorithm [34]. Then, theaver-
age dinucleotide frequencies(16 combinations) were also
included in the feature vector. Finally, we added theaver-
age frequenciesof A,C,G andU in the current sequence,
calculated ascnt(a)/L, for each nucleotidea.

4 Datasets and Main Results

The first and main objective of this section is to evaluate
the set of features presented in the previous section, by com-
paring the results it provides when using the SVM classi-
fier with the results reported in the literature for the miRNA
identification systems Triplet-SVM and miPred. The sec-
ond goal of this section is to evaluate our features by per-
forming different analyses on them.

As SVM implementation, we used the libSVM pack-
age [8] version 2.84. The values of the penalty parameter
C and the RBF kernel parameterγ were selected using the
grid search implemented by a Python script provided with
libSVM. The scaling of feature values was performed using
the default parameters (-1, 1).

4.1 Comparison with Triplet-SVM

To train the Triplet-SVM classifier [31], its authors have
built a dataset called TR-C. As positive examples, 163 pre-
miRNAs have been randomly selected from the 193 human
pre-miRNAs in miRBase version 5.0. As negative exam-
ples, 168 pre-miRNA-like hairpins with a similar stem-loop
structure to real pre-miRNAs have been randomly selected
from CODING, a set of 8494 sequences chosen by Triplet-
SVM’s authors from the NCBI RefSeq database [26]. There
are no multiple loops in these sequences.

For the test phase, the authors of Triplet-SVM built four
datasets:

− The TE-C dataset included the 30 remaining human pre-
miRNAs from miRBase version 5.0, and 1000 pseudo pre-
miRNAs randomly selected from the CODING set, exclud-
ing those already allocated to the TR-C training set.

− The UPDATED dataset was made of 39 human pre-
miRNAs, reported after the release of miRBase 5.0 and up
to the time when Triplet-SVM was completed.

− The CROSS-SPECIES dataset consists of 581 pre-
miRNAs from 11 species in miRBase 5.0, different from
human.
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Test yasMiR Triplet-SVM
accuracy(%) acc.(%)

TE-C: Human pre-miRNAs 100.0(30/30) 93.3
TE-C: Pseudo pre-miRNAs 96.2(962/1000) 88.1
UPDATED 94.9(37/39) 92.3
CROSS-SPECIES 95.2(553/581) 90.9
CONSERVED-HAIRPIN 94.23(2303/2444) 89.0

Table 2. Comparison of yasMiR with Triplet-SVM. The
results for Triplet-SVM are taken from [31]. In parenthe-
sis: the ratio of correctly classified instances. For positive
datasets (TE-C human, UPDATED and CROSS-SPECIES),
accuracy coincides with sensitivity. For negative datasets
(TE-C pseudo and CONSERVED-HAIRPIN), accuracy co-
incides with specificity.

− The CONSERVED-HAIRPIN dataset was built by ex-
tracting 2444 hairpins from the human chromosome 19, be-
tween positions 56000001 and 57000000, obtained from the
UCSC database (hg17, May 2004) [17]. Of all these hair-
pins, 3 are real pre-miRNAs, while the others are pseudo
pre-miRNAs.

On the TR-C training dataset, when doing 5-fold
cross-validation yasMiR obtained a prediction accuracy of
96.07% following the grid parameter search, compared to
93.50% reported for Triplet-SVM. For the profile, we in-
cluded 100 pivots, which are randomly generated RNA se-
quences of 45-65 nucleotides. Table 2 shows the results
we obtained on the above four test datasets, compared to
Triplet-SVM, after both SVMs were trained on the same
dataset, TR-C. One can see that yasMiR has a better accu-
racy/specificity/sensitivity, namely 2.6%−8.1% higher than
Triplet-SVM on all four test datasets. Detailed comparisons
on the different species in the CROSS-SPECIES dataset are
shown in Table 3. These good results encouraged us to do
further comparisons, this time with miPred SVM.

4.2 Comparison with miPred

For miPred [24], the training set (called TR-H) included
200 human pre-miRNAs randomly selected from miRBase
8.2, and 400 pseudo-miRNAs from the CODING set, built
by Triplet-SVM’s authors.

In order to test their classifier, the authors of miPred built
four datasets: TE-H, IE-NH, IE-NC and IE-M:

− TE-H and IE-NH were designed similarly to the datasets
TE-C and respectively CROSS-SPECIES used for testing
Triplet-SVM: TE-H included the 123 human pre-miRNAs
remaining from miRBase 8.2 after 200 such pre-miRNAs
have been allocated for training (TR-H), while IE-NH con-
tains 1918 pre-miRNAs from 40 non-human species from

Test yasMiR Triplet-SVM
accuracy(%) accuracy(%)

Mus musculusi 97.2(35/36) 94.4
Rattus norvegicus 80.0(20/25) 80.0
Callus Gallus 100.0(13/13) 84.6
Dnio Rerio 83.3(5/6) 66.7
Caenorhabditis briggsae 100.0(73/73) 95.9
Caenorhabditis elegans 93.6(103/110) 86.4
Drosophila pseudoobscura 93.0(66/71) 90.1
Drosophila melanogaster 97.2(69/71) 91.5
Oryza sativa 95.8(92/96) 94.8
Arabidopsis thaliana 96.0(72/75) 92.0
Epstein Barr Virus 100.0(5/5) 100.0

Total 95.2(553/581) 90.9

Table 3. Detailed comparison of yasMiR with Triplet-
SVM: accuracy on the CROSS-SPECIES dataset. The re-
sults for Triplet-SVM are taken from [31]. In parenthesis:
the ratio of correctly classified instances. Here accuracy co-
incides with specificity.

miRBAse 8.2. Both datasets included twice more negative
examples than positives, randomly selected from the COD-
ING set.

− IE-NC consists of 12387 non-coding RNAs (other than
miRNAs) from the Rfam 7.0 database [13], and IE-M is
made of 31 messenger RNAs selected from GenBank [3].

We recreated these five datasets according to the above
specifications made by the authors of miPred, since they did
not provide the datasets themselves.3

In order to ensure fair comparisons, we re-trained
yasMiR on the TR-H dataset, similarly to miPred, and
then we ran it on the above four test datasets. Ta-
ble 4 shows comparative results with miPred and Triplet-
SVM. We used the same set of 100 randomly gener-
ated pivots as we have previously done for the compari-
son with Triplet-SVM. Our SVM not only outperformed
again Triplet-SVM on all above mentioned test datasets,
but it also definitely outperformed miPred on the IE-
NC and IE-M datasets (82.95% vs. 68.68%, and respec-
tively 100% vs. 87.09% accuracy/specificity). On IE-NH
yasMiR loses respectively 1.53%/1.73%/1.43% in accu-
racy/sensitivity/specificity compared to miPred. On the IE-
NH dataset, the accuracy of yasMiR is slightly better than
that of miPred (93.77% vs. 93.50%) while its specificity is
1.23% lower (down to 96.74% from 97.97%). Note that
Triplet-SVM misclassified all 31 instances in the IE-M set,

3Because we re-created the miPred’s train and test datasets, it is possi-
ble that there will be slight differences between the results published in [24]
and those that would be obtained by running miPred and Triplet-SVM on
the re-created datasets.
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yasMiR miPred Triplet-SVM
Test accuracy(%) accuracy(%) accuracy(%)

se.(%) sp.(%) se.(%) sp.(%) se.(%) sp.(%)

TE-H 93.77 93.50 87.96
87.80 96.74 84.55 97.97 73.15 93.57

IE-NH 94.11 95.64 86.15
90.35 95.99 92.08 97.42 86.15 96.27

IE-NC 82.95 68.68 78.37
IE-M 100 87.09 0

Table 4. Comparison of yasMiR with miPred and Triplet-
SVM. The results for miPred and Triplet-SVM are taken
from [24]. Only accuracy is given for IE-NC and IE-M
since these datasets are made only of pseudo miRNAs; in
such a case, specificity is equal to accuracy, and sensitivity
is undefined.

while yasMiR correctly classifies them all.
Our conclusion so far is that yasMiR is a serious con-

tender not only for Triplet-SVM, but also for miPred.

4.3 yasMiR results on miRBase 12.0

We have also tested our SVM on sequences from miR-
Base 12.0 (released in October 2008). For the training set,
this time all678 human miRNAs from miRBase 11.0 were
used as positive examples, and also1256 sequences from
the CODING dataset as negative examples. The testing set
includes3651 positive examples from miRBase 12.0 and
7198 negative examples from the CODING dataset. The
set of3651 positives was obtained by removing the posi-
tive training sequences from miRBase 12.0, and using the
clustering algorithm presented in the supplementary mate-
rial of the miPred paper [24] for the removal of similar se-
quences. First, all the sequences were sorted in decreasing
length order, and the first one became the representative of
the first cluster. Then, each of the remaining sequences was
compared with the existing representatives, and added into
a cluster if the similarity measure with any representativeis
above90%. The remaining set of3651 sequences is the final
set of representatives, using the above algorithm on miR-
Base 12.0 (after the training positives have been removed).
The BLAST system was used for sequence comparison. On
this dataset, the yasMiR system obtained89.64% sensitiv-
ity and 97.37% specificity, with the resulting accuracy of
94.77%.

5 Feature analysis

Since yasMiR uses features which are a probabilistic
(McCaskill) version of the features employed by Triplet-
SVM, one would question whether our design decision is

Test using non-probabi- yasMiR
listic triplet patterns

TE-C: Human pre-miRNAs 96.67 (29/30) 100
TE-C: Pseudo pre-miRNAs 95.9 (959/1000) 96.2
UPDATED 94.9 (37/39) 94.9
CROSS-SPECIES 95.87 (557/581) 95.2
CONSERVED-HAIRPIN 93.09 (2275/2444) 94.23

Table 5. Prediction accuracy(%) results obtained by yas-
MiR on the Triplet-SVM datasets when the features for
probabilistic triplet patterns were replaced with their non-
probabilistic (Triplet-SVM) counterpart. The right column
results are from Table 2.

B ∪ C A ∪ C A ∪ B

Test accuracy(%) accuracy(%) accuracy(%)
se.(%) sp.(%) se.(%) sp.(%) se.(%) sp.(%)

TE-H 93.22 94.30 91.32
83.73 97.96 89.43 96.74 81.30 96.34

IE-NH 92.64 94.26 92.26
88.58 94.68 93.32 94.73 84.04 96.37

IE-NC 78.94 59.84 91.77
IE-M 100 6.45 100

Table 6. Prediction results for yasMiR on miPred datasets
when removing one category (A, B or C) of its features.
Bold faces were used to designate better values than those
in Table 4, the leftmost numerical column.

indeed justified. Therefore we made a test in which we re-
placed the features related to the probabilistic triplet pat-
terns with those taken from the Triplet-SVM package. We
used the same procedure as for the comparative test between
yasMiR and Triplet-SVM. The results we obtained for yas-
MiR (Table 2) are usually slightly (and even significantly)
better than the ones we obtained with non-probabilistic fea-
tures computed for triplet patterns (Table 5). This is es-
pecially true for the TE-C (human) and CONSERVED-
HAIRPIN datasets.

To further analyse yasMiR’s set of features, we also in-
vestigated what prediction results are obtained when remov-
ing each one of the different categories of features defined
for our system (see Table 1):

− CategoryA: profile alignment scores with the randomly
chosen pivot sequences.

− CategoryB : probabilistic means of the number of oc-
currences of triplet patterns.

− CategoryC: other probabilistic and non-probabilistic
features.
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Using the same datasets as miPred [24], we investigated
the effect on accuracy, sensitivity and specificity when re-
moving one of the three categoriesA, B, or C. The reader
should compare the first numerical column in Table 4 with
Table 6. It can be easily seen that the prediction results with
the complete feature set are in many cases significantly bet-
ter than those that have been obtained when a category of
features is removed. This is especially true for the IE-NC
and IE-M datasets. Going into more details, one can see the
following facts:

− retracting the categoryA of attributes (see column 1 in
Table 6) slightly improves the specificity on TE-H (from
96.74% to 97.96%) at the significant cost of sensitivity
(from 87.80% down to 83.73%);

− retracting the categoryB of attributes (see column 2 in
Table 6) slightly improves some of the statistics we ob-
tained previously for yasMiR on TE-H and IE-NH but dras-
tically affects the performance on IE-NC (from 82.95%
down to 59.84%) and especially on IE-M (from 100% down
to 6.45%);

− retracting the categoryC of attributes (see column 3 in
Table 6) improves the specificity on IE-NC (from 82.95%
up to 91.77%) and on IE-NH (from 95.99% to 96.37%),
but significantly affects the sensitivity on TE-H (from
87.80% down to 81.30%) and IE-NH (from 90.35% down
to 84.04%).

The above analysis imply that each of these categories of
features has its own contribution towards the overall good
classification results produced by yasMiR.

It is also interesting to note that the categoriesA and
C of attributes are more suitable for the TE-H and IE-
NH datasets, whileB is indispensable for the IE-NC and
IE-M datasets. These facts suggest that there are slightly
specialised contributions of these categories of featuresto-
wards discriminating among different categories of RNA
sequences.

For expressing the quality of thei-th feature we used the
F1 andF2 scores, defined by

F1 =
|µ+

i − µ−
i |

|σ+
i + σ−

i |
, F2 =

(µ+
i − µ̄i)

2 + (µ−
i − µ̄i)

2

(σ+
i )2 + (σ−

i )2
,

whereµ+
i /µ−

i , σ+
i /σ−

i denote the means and standard de-
viations of the positive and negative training datasets forthe
i-th feature. After sorting the features in descending order
according to theF1 andF2 scores, we identified the first
three features, and they proved to be the same for both sort-
ing measures:

− FeatureD: the overall non base pairing probability
(F1 = 1.21 andF2 = 1.64),

A ∪ B ∪ C A ∪ B ∪ C A ∪ B ∪ C

\{D} \{E} \{F}
Test accuracy(%) accuracy(%) accuracy(%)

se.(%) sp.(%) se.(%) sp.(%) se.(%) sp.(%)

TE-H 93.76 93.49 93.49
86.17 97.56 86.17 97.15 87.80 96.34

IE-NH 94.99 94.40 94.14
91.24 96.87 90.45 96.37 90.45 95.98

IE-NC 67.68 61.95 79.74
IE-M 19.35 22.58 100

Table 7. Prediction results for yasMiR on miPred datasets
when removing one of the featuresD, E or F . Bold faces
were used to designate better values than those in Table 4,
the leftmost numerical column.

0.95 confidence 0.90 confidence
Test accuracy(%) accuracy(%)

se.(%) sp.(%) se.(%) sp.(%)

TE-H 94.30 93.76
87.80 97.50 87.80 96.74

IE-NH 94.07 93.39
90.14 96.03 91.08 94.55

IE-NC 83.28 77.20
IE-M 100 100

Table 8. Prediction results of yasMiR on miPred’s test
datasets using 144 features and respectively 132 features se-
lected from the whole set of 169 features via Kolmogorov-
Smirnov redundancy filtering. Bold faces were used to des-
ignate better values than those in the leftmost numerical col-
umn of Table 4.

− FeatureE : the folding minimum free energy (F1 =
0.95 andF2 = 0.99),

− FeatureF : the probabilistic feature corresponding to the
triplet pattern ‘...’ with the nucleotideC on the middle po-
sition (F1 = 0.93 andF2 = 0.90).

The effects on yasMiR when each of these three features
is removed are shown in Table 7. It is interesting to note that
removal of featuresD andE has a big impact on the IE-NC
and IE-M datasets, while featureF seems to be only slightly
affecting the result on the IE-NC dataset. Our opinion is that
this last feature is made almost redundant by other features.

We therefore tried feature selection applying the
Kolmogorov-Smirnov filter for redundancy elimination [4]
on the full set of yasMiR’s 169 features including the 100
randomly chosen pivots used so far. The Kolmogorov-
Smirnov filtering procedure goes as follows: first we rank
and sort the features according to the Symmetrical Uncer-
tainty (SU ) score which is a normalised version of the mu-
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tual information statistics, and then, starting from the top
ranking feature that has not yet been filtered, we eliminate
all features of lower rank which are redundant to it, accord-
ing to the Kolmogorov-Smirnov test, up to a certain confi-
dence level. (For more details see Section 6.2.2.)

Using a 0.95 confidence level, the number of features
gets reduced to 144 — remarkably, all but one of the 26
eliminated features are pivots —, most of the classifica-
tion statistics on the miPred’s test datasets get improved,
as shown in the Table 8. At 0.90 confidence, things don’t
go so well, and unfortunately a 5.55% specificity/accuracy
loss is reported on the IE-NC dataset (from 82.95% down
to 77.20%). However, it is worth noting that this time 31
pivots got eliminated, together with 6 non-pivot features.

6 Searching for Further Improvements

In this section we will firstly present the results we got
when replacing the SVM classifier in our system with Ran-
dom Forests, another classifier which has was reported to
give better results than SVM on certain tasks. Secondly,
here we will report on our efforts to automatically select a
set of good pivot RNA sequences.

6.1 Random Forests vs. SVM

The MiPred system [24] got better results for miRNA
identification when using the Random Forests (RF) clas-
sifier [7] instead of SVM, with the same set of features,
namely the Triplet-SVM features plus the folding minimum
free energy and the P-value [12]. We wanted to see whether
the same is true for yasMiR’s set of features. This sub-
section briefly presents Random Forests (RF), and then it
reports on the tests we did using RF as classifier for our
miRNA identification problem.

Random Forests is anensemble learningalgorithm
that was derived frombagging, also devised by Leo
Breiman [6]. Likeboosting[27] too, these two techniques
use certain strategies for aggregating some simpler classi-
fication algorithms. In the sequel we will consider that the
aggregated classifiers aredecision trees.

In the bagging approach, whose name comes from
bootstrap aggregating, each tree is independently con-
structed using a bootstrap sample (i.e. sampling with re-
placing) from the training dataset. Classification of a test
instance is done by taking a simple majority vote among
the decision trees.

The Random Forests algorithm extends bagging with
and additional layer of randomness, namely the random fea-
ture selection: while in standard decision trees each node is
split using the best split among all variables, in RF each
node is split using the best among a subset of features ran-
domly chosen at that node. Thus, RF uses (only) two pa-

RF SVM
Test without with with

feature sel. feature sel. feature sel.

TE-C 96.45 96.41 95.34
UPDATED 94.87 94.87 94.87
CROSS-SPECIES 93.70 93.21 95.53
CONSERVED-HAIRPIN 93.30 93.65 91.90

Table 9. Comparing the predictive accuracy(%) of RF and
SVM on test datasets from Triplet-SVM, using yasMiR fea-
tures. Feature selection was based on theimportancefunc-
tion found in the package R. 99 features have been selected.
Bold faces were used to designate better values than those
given in the leftmost numerical column of Table 4.

rameters: the number of variables in the random subset at
each node, and the number of trees in the forest.

Although RF is a somehow counter-intuitive strategy,
it proved to be robust against overfitting, and it produced
some good results when compared to other machine learn-
ing techniques including SVMs, neural networks, discrim-
inate analysis, etc. As implementation for RF, we used
the randomForest(version 4.5-25) package for the R lan-
guage [1].

Table 9 shows the accuracy results that we obtained
when we ran the RF and classifier on TR-C, which was
the Triplet-SVM’s training set, and we did comparisons
on its test sets: TE-C, UPDATED, CROSS-SPECIES, and
CONSERVED-HAIRPIN. We used the features described
in Section 3. Profile similarities were computed on the
same set of 100 pivots as before. RF produced results which
are slightly below those obtained by yasMiR SVM (see Ta-
ble 2).

We then used theimportancefunction from the R pack-
age to select the best features following the analysis of the
decision trees produced by RF on the full set of features. By
using the 99 best features RF only got a slight improvement
on the CONSERVED-HAIRPIN dataset.

Running SVM using the same set of 99 selected fea-
tures provided a better result only on the CROSS-SPECIES
dataset: 95.53% vs. the 95.2% accuracy/sensitivity obtained
by yasMiR when using the full set of features.

We also performed a similar comparison between RF
and SVM on the test datasets designed by miPred’s au-
thors, after having had both classifiers trained on miPred’s
training dataset, TR-H. Profile similarities were computed
on the same 100 pivots as before. Table 10 shows that
unfortunately RF did not produce better results than the
yasMiR SVM described in Section 3 on any of these test
datasets (see yasMiR’s results in Table 4). Instead, on the
IE-NC and IE-M datasets, RF registered heavy losses of
accuracy/specificity: 64.79% vs. 82.95%, and respectively
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RF SVM
Test without with with

feature sel. feature sel. feature sel.

TE-H 92.41 91.84 91.06
IE-NH 94.03 93.46 92.2
IE-NC 64.79 63.87 78.86
IE-M 22.00 23.87 90.32

Table 10. Comparing the predictive accuracy(%) of RF
and SVM on test datasets from miPred, using yasMiR fea-
tures. Feature selection was again based on theimportance
function. 19 features have been selected.

22.45% vs. 100%. TheimportanceRF-supported feature
selection function did not help RF to get any significant im-
provement. However, one can see that the SVM classifier,
when using the same set of 19 best features selected via the
importancefunction, produces similar results to RF on TE-
H and IN-NH, but much better results on IE-NC and IE-M.
That means that SVM’s generalisation power on the nega-
tive instances that have been used by miPred for training is
much better than that of RF.

The conclusion of this subsection is that RF seems to
be a not good enough candidate to replace SVM for pre-
miRNA identification using the set of features presented in
Section 3.

6.2 Automatically choosing the pivots

Until now we performed several runs with yasMiR using
different sets of randomly generated pivots, and we retained
the results for the set of pivots that produced the best over-
all results on the Triplet-SVM and the miPred test datasets.
However one could ask whether we could get better results
by automatically selecting (or improving) the set of pivots.

6.2.1 Using clustering

Here we report on using choosing “representative” pivots
among a pool of candidates, using clustering and the Eu-
clidean distance between the vectors associated to pivots.
For each candidate pivot, its vector was obtained by com-
puting the profile similarity measure between the pivot and
each of the sequences in the training set (e.g. TR-H).

Table 11 shows the results we obtained for 200 pivots
automatically selected from a pool of 2000 randomly gen-
erated sequences. Thek-means clustering algorithm was
used to get those 2000 sequences grouped into 50 clusters,
and then we randomly selected 4 pivots from each cluster.4

The results show that the obtained specificity for yasMiR

4The libSVM’s parameters used here wereC = 4 andγ = 0.5.

SVM RF
Test accuracy(%) accuracy(%)

se.(%) sp.(%) se.(%) sp.(%)

TE-H 92.14 91.59
85.37 95.53 81.82 96.47

IE-NH 91.17 93.98
83.58 94.97 89.94 96.00

IE-NC 93.61 64.20
IE-M 100 18.77

Table 11. Prediction results of yasMiR (both SVM and
RF variants) on miPred’s test datasets using 200 pivots se-
lected via clustering from a pool of 2000 randomly gener-
ated pivots. Bold faces were used to designate better values
than those given in the leftmost numerical column of Ta-
ble 4.

SVM’s is slightly lower than that obtained with the manu-
ally chosen pivots on miRBase 8.2 (on TE-H: from 96.74%
to 95.53%, and on IE-NH: from 95.99% to 94.97%), while
the sensitivity decreased significantly (TE-H: from 87.80%
to 85.37%, and IE-NH: from 90.35% to 83.58%).5 Remark-
ably, the specificity/accuracy of yasMiR SVM was dramat-
ically improved for IE-NC (from 82.95% to 93.61%, while
miPred reported only 68.68%), and for IE-M the speci-
ficity/accuracy was kept at 100%. The same table shows
that using these 200 pivots, RF provided only slightly dif-
ferent accuracies on TE-H and IE-NH, but performed very
badly on IE-NC (from 93.61% down to 64.20% speci-
ficity/accuracy) and IE-M (from 100% down to 18.77%
specificity/accuracy).

These results make us conclude that automatically
searching for better pivots is worth further working, and
again that SVM is a machine learning technique undoubt-
edly better suited than RF for our task and data.

6.2.2 Using the Kolmogorov-Smirnov filter

In this subsection we will use the Kolmogorov-Smirnov fil-
ter for searching among a large pool of randomly generated
pivots.

The probabilistic alignment scores to pivots used in de-
scribing sequences lead to a distance based description. It
is clear that the pivots need not be chosen from positive or
negative examples, but at a correct distance from members
of these classes. We decided to try a non-linear feature se-
lection algorithm in order to search for a better set of pivots.
Such a method is the Kolmogorov-Smirnov filter, which has
been reported to work well in conjunction with SVM’s. We
have implemented such a procedure following directions

5See Table 4 for correlation.
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from [4]. Here we will briefly explain how this filter works,
and then we will discuss the results we got when using this
filter for automatically selecting better pivots.

The Kolmogorov-Smirnov filter [4] is divided into two
parts. The first part is concerned withranking the features
according to a mutual information measure, and the second
part recursively eliminates redundant features. For the first
step, recall that the Shannon entropy for a random variable,
X, is

H(X) = −
∑

i=1

P (xi) log P (xi)

while the joint Shannon entropy of two variablesX andC
is given by the formula

H(X,C) = −
∑

i=1

P (xi, cj) log P (xi, cj).

The mutual information ofX andC is then defined as:

MI(X,C) = H(X) + H(C) − H(X,C)

The ranking criterion used by the Kolmogorov-Smirnov fil-
ter is based onMI as it is just a normalised version of it.
Hence we define the Symmetrical Uncertainty coefficient
SU as:

SU(X,C) = 2 ∗ MI(X,C)

H(X) + H(C)

For our particular problem, the observed values ofX are
chosen as the scores obtained by aligning every sequence to
a fixed pivot, discretised into a number of bins (we chose
100 bins), while the observed values ofC are the class la-
bels.

The second part of the filter isredundancy elimination,
which is based on a theorem by Kolmogorov and Smirnov
that shows when two underlying one-dimensional probabil-
ity distributions differ from one another. For a random vari-
able,X, observed throughn samples, the empirical distri-
bution function,Fn is :

Fn(x) =
1

n

n
∑

i=1

IXi≤x

whereIXi≤x is the indicator function.
The Kolmogorov-Smirnov statistic for two variables is

Dn,n′ = sup
x

|Fn(x) − F ′
n′(x)|

We will say that the values observed have not been gen-
erated by the same distribution, with a confidence level of
α if

√

nn′

n + n′
Dn,n′ > Kα,

where theKα constant is obtained from the Kolmogorov-
Smirnov distribution. Recall that the Kolmogorov-Smirnov

SVM
Test acc.(%)

se.(%) sp.(%)

TE-H 92.53
85.37 96.74

IE-NH 91.35
86.24 93.90

IE-NC 87.44
IE-M 100

Table 12. Prediction results of yasMiR on miPred’s test
datasets using the best 13 pivots selected from the 10000
randomly generated pivots. Bold faces were used to desig-
nate better values than those in Table 4, the leftmost numer-
ical column.

distribution is the distribution of the random variableK =
supt∈[0,1] |B(t)|, whereB(t) is the Brownian bridge. The
cumulative distribution ofK is

Pr(K ≤ x) =

√
2π

x

∞
∑

i=1

e
−(2i−1)2π2

8x2

andKα is found from the equationPr(K ≤ Kα) = 1−α.
We used a confidence level of 95% for determining

whether two features were redundant.
When we applied the Kolmogorov-Smirnov filter to our

problem — selecting good representatives among a large
pool of randomly generated pivots —, we tried larger and
larger sets of pivots. We began with an initial set of 5000
pivots, and end up with a set of 10000. As stopping criteria
for the filter, we used a joint condition: halt when either
100 pivots have been selected (and the remaining ones will
be subsequently discarded), or no more redundancies could
be found. When selecting from the first set of 5000 pivots,
only 72 non redundant sequences were found, so we chose
the last remaining 28 from possibly redundant ones. When
selecting from the set of 10000, we found a number of 134
non redundant pivots.

The Table 12 shows that when using the best 13 fea-
tures selected by the Kolmogorov-Smirnov filter, the results
obtained by yasMiR on the miPred datasets are compara-
ble with those reported in the previous subsection. On the
TE-H dataset, we got a better specificity (96.74%) com-
pared to the one produced via clusterization, while on the
IE-NH dataset, the sensitivity improved (from 83.58% to
86.24%) but it still remained significantly lower than the
one obtained with hand-chosen pivots (90.35%). On IE-NC
the specificity/accuracy is now at midway between the one
obtained via clusterization (93.61%) and the original one,
produced by hand-chosen pivots (82.95%). On IE-M, the
specificity/accuracy remained at 100%.
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We suggest that this method would be best used in
conjunction with another feature selection method, were
the initial bulk of features would be removed by the
Kolmogorov-Smirnov filter, and the final features would be
selected by the other, more complex method.

7 Conclusions and Further Work

We proved that the base pairing probabilities provided
by McCaskill’s algorithm combined with some other, sim-
ple statistical measures make a SVM classifier achieve high
pre-miRNA prediction accuracy rates, comparable to the
best published results up to our knowledge.

We plan to make direct comparisons with a quite recent
kNN-based classifier for non-coding RNAs [29]. Its results
seem to be very competitive, due to the use of certain topo-
logical features. We will see whether those features could
be generalized by using again the base-pairing probabilities
computed by McCaskill’s algorithm. If so, we will check
whether adopting them into yasMiR’s feature set will make
it further improve the quality of pre-miRNA prediction.

It will also be interesting to see whether an even more re-
cent work for identifying miRNAs [30], which also used the
Triplet-SVM patterns but replaced the automate classifier
with a ranking algorithm, will improve its results when re-
placing the simple triplet features with their enhanced coun-
terpart obtained by using McCaskill’s probabilities.
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publications. Daniel Pasailă identified the use of McCaskill
probabilities as a valuable way to design a new SVM for
miRNA recognition, came up with the idea of using “pivot”
sequences to improve the classification, designed the whole
set of features for yasMiR SVM and implemented their
computation, programmed many of the experiments re-
ported for yasMiR (namely the comparisons with Triplet-
SVM and miPred, the test on miRBase 12.0, the feature
analysis — except for redundancy tests —, the search for
better pivots using clustering), and documented the exper-
iments, for both publication and web versions. Irina Mo-
horianu run the RF experiments and also the PCA exper-
iments, documented them, and helped with running addi-
tional yasMiR experiments. Andrei Sucilă implemented the
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