
University “Alexandru Ioan Cuza” of Iaşi
Faculty of Computer Science

T

E

C

H

N

I

C

A

L

R

E

P

O

R

T

A new strategy for push-relabel

algorithm framework for matroid

optimization

Emanuel Florentin Olariu

TR 13-01, June 2013

ISSN 1224-9327

Universitatea “Alexandru Ioan Cuza” Iaşi
Facultatea de Informatică

Str. Berthelot 16, 6600-Iaşi, Romania

Tel. +40-32-201090, email: bibl@infoiasi.ro

Abstract

In this paper we present a combinatorial push-relabel algorithm based on lowest level/bfs traversal
for matroid optimization. In contrast with other known algorithms our procedure uses lowest level
rule and needs no lexicographic order of the elements. Combined with a reduction of the number of
active basis our strategy gives a time complexity of O(n6).

Keywords: push-relabel algorithms, combinatorial optimization, matroid optimization.

1 Introduction

Push-relabel algorithms are often used in the submodular optimization especially for the submodular
flow problem ([3], [4]). This framework includes some interesting combinatorial optimization problems
as polymatroid intersection, minimum cost problem, or minimizing submodular functions ([5], [8], [10]).
Push-relabel algorithms are an alternative to the procedures using augmenting path technique (see [7] in
the context of minimizing submodular functions).

Suppose E is the ground-set of our structure (say, a matroid), the procedure uses a level function
ϕ : E → {0, 1, . . . , n}. In the push relabel framework (see [6]) we perform a local search, and, if a progress
(i.e. a push) is not possible, then the level of the current element is increased (this means a relabel). The
algorithm will terminate when a specific condition (related to the optimization context or the level sets)
holds.

The algorithm maintains a level function ϕ : E → {0, 1, . . . , n} (where |E| = n), the level sets are
Λk = ϕ−1(k), 0 6 k 6 n. For a given set S ⊆ E, we denote

ϕmin(S) = min
u∈S

ϕ(u)

Let M = (E, I, r) be a matroid over E, I being its independence family and r its rank function(for
an exhaustive introduction in matroid theory see [9]). We denote by B ∈ B the basis family, i.e., the
collection of maximal inclusionwise independent sets. For a given basis B, and an element s ∈ E \B, we
denote by C(B, s) the unique circuit (a maximal non independent set of E) included in B ∪ {s}.

Lemma 1. ([2]) Let M(E,B) a matroid, B ∈ B, s ∈ E \B, t ∈ C(B, s), and B′ = B \ {t} ∪ {s} ∈ B. If
ϕ(t) = ϕmin (C(B, s)), then, for each u ∈ S − \(B′ ∪ {t}), we have

ϕmin (C(B′, u)) > ϕmin (C(B, u))

Proof. If t ∈ C(B, u), then ϕmin(C(B, u)) 6 ϕ(t); as u ∈ C(B, u) \ C(B, s), there exists a circuit

C ⊆ (C(B, u) ∪ C(B, u)) \ {t}, u ∈ C,

by strong circuit elimination axiom - see [9]. C ⊆ B′ ∪ {u}, therefore we must have C = C(B′, u), and
ϕmin (C(B′, u)) > min {t, ϕmin (C(B, u))} = ϕmin (C(B, u)).

If t /∈ C(B, u), the C(B, u) = C(B′, u).

Remark 1. Obviously ϕmin (C(B′, t)) = ϕmin (C(B, s)) as C(B′, t) = C(B, s).

This lemma will be useful for proving that some condition are algorithm invariant.

1

2 Matroid polytope membership

Let M = (E, I, r) be a matroid over E. The independence polytope of M , I(r), is the convex hull of the
characteristic vectors from I, and the base polytope of M , B(r), is the convex hull of the characteristic
vectors from B. These polytopes have the following characterization (see [1]):

I(r) =
{
x ∈ RE

+ : x(S) 6 r(S),∀S ⊆ E
}

B(r) = {x ∈ I(r) : x(E) = r(E)}

Let g : E → R+ a non-negative vector; we devise a push-relabel algorithm for the following problem:
determine a member, x, of the independence polytope I(r) such that x 6 g and x(E) is maximum. We
recall here a known result followed by its proof:

Theorem 1. ([2]) We have

max
x6g,x∈I(r)

x(E) = min
S⊆E

[r(S) + g(E \ S)]

Proof. If x ∈ I(r) and x(u) 6 g(u), ∀u ∈ E, then

x(E) = x(S) + x(E \ S) 6 r(S) + g(E \ S)

therefore
max

x6g,x∈I(r)
x(E) 6 min

S⊆E
[r(S) + g(E \ S)]

with equality if and only if
x(S) = r(S), andx(E \ S) = g(E \ S),

x being a feasible vector (x 6 g, componentwise).
The proof is completed by describing an algorithm which finds a feasible vector x and a subset S ⊆ E

satisfying the above criteria. The algorithm maintains a member x of B(r), i.e., a convex combinations
of the characteristic vectors of bases of M :

x =
∑
B∈B

λB · χB

Following notations from [2] we say that a basis B ∈ B is active if λB > 0, a element u ∈ E is g-larger
(g-smaller or g-neutral) if g(u) > x(u) (g(u) < x(u) or g(u) = x(u)). We will say that a triple (B, s, t)
is active if B is an active basis, s /∈ B, t ∈ C(B, s), and ϕ(t) = ϕmin (C(B, s)) = ϕ(s)− 1.

Throughout the execution the following two properties are invariant (see lemma 1):

(L1) ϕ(u) = 0, for every g-smaller u ∈ E

(L2) ϕmin(C(B, u)) > ϕ(u)− 1, for all active basis B and u ∈ E \B

The algorithm ends when either (I): there is no g-larger elements or (II): there is a Λk = ∅ and all
g-larger elements are over k.

Lemma 2. ([2]) If (I) holds, then g ∈ I(r); if (II) holds, then min {x,g} and S = {u ∈ E : ϕ(u) 6 k+1}
satisfy conditions (L1) and (L2) from above.

2

It is important to emphasize that, if there are g-larger elements and (II) does not hold, then we can
always pick a g-larger element on a level 6 n − 1. On the current g-larger element s, the algorithm
performs one of the following two operations: lift s which means an increment of ϕ(s) or push at s, if
exists an active triple (B, s, t) which consists in a decrease of λB and an increase of λB′ by the same
amount ∆ = min {g(s)− x(s), λB} , where B′ = B \ {t} ∪ {s}. We call the last operation a push from s
to t.

There are two types of push at an element s: a neutralizing one if ∆ = g(s) − x(s) and a common
one otherwise. A treat of an element s means push at s while it is possible; when it is no more possible
to push, if s was not neutralized, lift s.

After a push from s to t, λB becomes (λB −∆), and λB′ becomes (λB′ −∆), therefore

(a) if the push is neutralizing, the number of active basis can increase by one - if B remains active and
B′ steps out as active;

(b) if the push is a common one (∆ = λB) B steps out inactive, and B′ can become active.

Remark 2. A neutralizing push can increase the number of active basis by at most one; on the other
hand a common push maintains or decreases the number of active basis by one.

After a push at s with ϕmin (C(B, s)) = ϕ(t) = ϕ(s) − 1, and t ∈ C(B, s), x(t) decreases by ∆,
therefore there are three cases related to t:

(a) t was g-larger and remains so;

(b) t was g-smaller and remains so or becomes larger or neutral;

(c) t was g-neutral and becomes larger.

Remark 3. If the g-larger element s is chosen to be on the lowest level, then t cannot be g-larger, and
if it is g-smaller, then ϕ(s) = 1 and ϕ(t) = 0.

The time complexity of this procedure heavily depends on the strategy of choosing the element to
be treated. Our approach uses a bfs like procedure starting with a g-larger element s from a minimum
possible level. Such an element is chosen whenever the queue becomes empty and the stopping rules are
not yet fulfilled.

The execution of the algorithm can be decomposed in phases: a phase is the segment of execution
between two liftings. Each phase consists of a variable number of waves: a wave starts when the queue
is empty and a new g-larger element is added to it and will end when the queue becomes again empty or
a lifting arises - whichever comes first.

Lemma 3. There are at most n2 phases.

Proof. This is obvious as each element starts from the zero level and can reach, at most, the nth level,
hence it supports at most n liftings.

Lemma 4. Each phase consists of at most n waves.

Proof. Each wave starts with a new g-larger element; we will prove that the starting element is neutralized
during its wave and remains so through the entire phase except perhaps at the last wave - in this case
the starting element supports a lifting. Hence the starting elements of distinct waves are different.

Suppose that Wi is the set of elements corresponding to the ith wave, 1 6 i 6 q and si is the
corresponding starting element. During this wave Algorithm 1 builds a bfs tree Ti (following parent
vector, its root is si), all its interior vertices being neutralized elements - if i < q; obviously the leaves

3

Algorithm 1 A push-relabel algorithm

Q ← ∅;
for u ∈ E do

visited[u]← 0; parent[u]← 0;
end for
while (not(A) and not(B)) do

let s be a g-larger, Θ-minimum element; Q.push(s); . when Q becomes empty
while Q 6= ∅ do

s = Q.pop(); visited[s]← 0;
if (∃B an active basis, s /∈ B 3 t, Θ(t) = Θ(s)− 1) then . Θmin(B) = Θ(t)

push(B, s, t);
if (x(t) < g(t)) and visited[t] = 0 then . if t becomes g-larger
Q.push(t); visited[t]← 1; parent[t] = s;

end if
else if g(s) > x(s) then . if s is still g-larger

Θ(s) + +; Q ← ∅;
for u ∈ E do

visited[u]← 0; parent[u]← 0;
end for

end if
end while

end while

of this tree are all g-smaller or -neutral elements, hence si+1 /∈ Wi (in particular ϕ(si) 6 ϕ(si+1)). It is
worthly to note that all these leaves are in Λ0, as an element becomes g-neutral only if was -smaller - see
Remark 2.

Remark 4. In the last wave of a phase the element which remains g-larger after its treatment is a leave
or a parent of a leave in the subsequent tree.

Lemma 5. If each wave starts with n active basis, then every phase contains at most 2n3 common
pushes.

Proof. In a wave, after the ith neutralization the number of active basis is at most n + i, hence the
number of common pushes during the ith treatment is less than n + i. It follows that the total number
of common pushes within a wave is less than

n+ (n+ 1) + . . .+ (n+ n− 1) < 2n2

Our final results concerns the total time complexity of the above algorithm.

Theorem 2. Suppose γ is the time used for finding an active triple (B, s, t) for a given s. If we reduce
the number of the active basis, after each wave, to at most n, the time complexity of the algorithm is
O(γn6).

Proof. In a wave which starts with at most n active basis, at the end the number of active basis is 6 2n.
Using a classic result of Caratheodory (see [7], [10], [2]) we can reduce, in O(n3), this number again to

4

at most n. If we include this reduction in the corresponding wave, the complexity of each wave becomes
O(γn3), hence a phase has a complexity of O(γn4) (see lemmata 4 and 5). Now, using lemma 3, we get
a total time complexity of O(γn6).

3 Conclusion

In this paper we show that the lowest level rule for choosing the curent element to be treated gives a
good strategy for the push-relabel algorithm framework. In this study we use this rule in combination
with a bfs traversal, the pure lowest level rule would give a dfs traversal which, for now, does not give
the same good results.

The algorithm complexity is the same obtained in [2] using highest level rule, although in combination
with active basis reduction this rule can give better results. As our rule offers more interesting properties
of the treated elements, a future work can include the adaptation of this rule to the submodular flow
algorithm.

Acknowledgments We thank professor C. Croitoru for this useful remarks.

References

[1] Edmonds, J., Matroids and the greedy algorithm, Math. Progr. 1, pp. 127-136, 1971.

[2] Frank, A., Miklós, Z., Simple push-relabel algorithms for matroids and submodular flows, Japan
Journal of Industrial and Applied Mathematics, vol. 29, Issue 3, pp, 419-439, 2012

[3] Fujishige, S., X. Zhang, New algorithms for the intersection problem of submodular systems, Japan
Journal of Industrial and Applied Mathematics, vol.9, pp.369-382, 1992.

[4] Fujishige, S., S. Iwata, Algorithms for Submodular Flows. IEICE TRANS. Inform. Syst., 2000.

[5] Fujishige, S., Submodular Functions and Optimization, 2nd edition,Annals of Discrete Mathematics,
vol. 58, Elsevier, 2005.

[6] Goldberg, A. V., Tarjan, E. R., A new approach to the maximum-flow problem, Jornal of the ACM,
vol. 35, issue 4, pp. 921-940, 1988.

[7] Iwata, S., L. Fleischer, S. Fujishige, A Combinatorial, Strongly Polynomial-Time Algorithm for
Minimizing Submodular Functions, Journal of ACM, vol. 48, pp. 761-777, 2001.

[8] Iwata, S., J. B. Orlin, A simple combinatorial algorithm for submodular function minimization,
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009.

[9] Oxley, J., G., Matroid Theory, Oxford University Press, 1992.

[10] Schrijver, A., A combinatorial algorithm minimizing submodular functions in strongly polynomial
time, Journal of Combinatorial Theory Series B, vol. 80, Issue 2, pp. 346-355, 2000.

5

