Published in Volume XXXIV, Issue 2, 2024, pages 163-187, doi: 10.47743/SACS.2024.2.163
Authors: G. Georgescu
Abstract
The mz-elements of a coherent quantale have recently been de- fined by the author as an abstraction of the mz-ideals of a unital commutative ring.
Having as its starting point the Dube and Ighedo recent paper on higher order ideals in ring theory, this paper deals with the higher order mz-elements of a coherent quantale A. For each natural number n we define the mzn-elements of A, so we obtain an ascending sequence that covers the set of all higher order mz-elements. We obtain a lot of properties of this sequence. In particular, the stationarity of the sequence is studied. Another category of results investigates how the coherent quantale morphisms preserve such properties.
References
[1] Dan D. Anderson. Abstract commutative ideal theory without chain conditions. Algebra Universalis, 6:131–145, 1976. doi:10.1007/BF02485825.
[2] Jimmy T. Arnold. Power series rings with finite Krull dimension. Indiana University Mathematics Journal, 31(6):897–911, 1982. URL: http://www.jstor.org/stable/24893282.
[3] Michael F. Atiyah and Ian G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley-Longman, 1969. doi:10.1201/9780429493638.
[4] Ali Benhissi and Ahmed Maatallah. A question about higher order z-ideals in commutative rings. Quaestiones Mathematicae, 43(8):1155– 1157, 2020. doi:10.2989/16073606.2019.1601647.
[5] Garrett Birkhoff. Lattice Theory, 3rd edition, volume 25 of American Mathematical Society Colloquium Publications. 1967.
[6] Daniela Cheptea and George Georgescu. Boolean lifting property in quantales. Soft Computing, 24(8):6169–6181, 2020. doi:10.1007/S00500-020-04752-8.
[7] Robert P. Dilworth. Abstract commutative ideal theory. Pacific Journal of Mathematics, 12(2):481–498, 1962. doi:10.2140/pjm.1962.12.481.
[8] Themba Dube and Amartya Goswami. On z-elements of multiplicatice lattices. CoRR, abs/2405.11670, 2024. arXiv:2405.11670.
[9] Themba Dube and Oghenetega Ighedo. Higher order z-ideals in com- mutative rings. Miskolc Mathematical Notes, 17(1):171–185, 2016. doi:10.18514/MMN.2016.1686.
[10] Patrik Eklund, Javier Gutiérrez Garcı́a, Ulrich Höhle, and Jari Kortelainen. Semigroups in complete lattices : Quantales, modules and related topics. Number 54 in Developments in Mathematics. 2018. doi:10.1007/978-3-319-78948-4.
[11] Alberto Facchini, Carmelo Antonio Finocchiaro, and George Janelidze. Abstractly constructed prime spectra. Algebra Universalis, 83:1–38, 2022. doi:10.1007/s00012-021-00764-z.
[12] George Georgescu. Some classes of quantale morphisms. Journal of Algebra, Number Theory, Advances and Applications, 24(2):111–153, 2021. doi:/10.18642/jantaa_7100122188.
[13] George Georgescu. mz -elements in coherent quantales. Fuzzy Sets and Systems, 476:108789, 2024. doi:10.1016/J.FSS.2023.108789.
[14] Oghenetega Ighedo and Warren Wm. McGovern. On the lattice of z- ideals of a commutative ring. Topology and its Applications, 273:106969, 2020. doi:10.1016/j.topol.2019.106969.
[15] Peter T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982.
[16] Carl W. Kohls. Ideals in rings of continuous functions. Fundamenta Mathematicae, 45(1):28–50, 1958. URL: http://eudml.org/doc/213468.
[17] Ahmed Maatallah and Ali Benhissi. Higher order z-ideals of special rings. Beiträge zur Algebra und Geometrie, 63(1):167–177, 2022. doi:10.1007/s13366-020-00553-0.
[18] C. S. Manjarekar and A. N. Chavan. z-elements and zj -elements in multiplicative lattices. Palestine Journal of Mathematics, 8(1):138–147, 2019.
[19] Jorge Martinez. Abstract ideal theory. Ordered Algebraic Structures, Lecture Notes in Pure and Applied Mathematics, 99:125–138, 1985.
[20] Jorge Martinez and Eric R. Zenk. When an algebraic frame is regular. Algebra Universalis, 50:231–257, 2003. doi:10.1007/s00012-003-1841-1.
[21] Gordon Mason. z-ideals and prime ideals. Journal of Algebra, 26(2):280– 297, 1973. doi:10.1016/0021-8693(73)90024-0.
[22] Christopher J. Mulvey. &. Supplemento ai Rendiconti del Circolo matematico di Palermo Serie II, 12:99–104, 1986.
[23] Tomasz Kowalski Nikolaos Galatos, Peter Jipsen and Hiroakira Ono. Residuated Lattices: An Algebraic Glimpse at Structural Logics, volume 151 of Studies in Logic and The Foundation of Mathematics. Elsevier, 2007.
[24] Jan Paseka and Jiřı́ Rosický. Quantales. In Bob Coecke, David Moore, and Alexander Wilce, editors, Current Research in Operational Quantum Logic: Algebras, Categories, Languages, volume III, pages 245–262. Springer Netherlands, 2000. doi:10.1007/978-94-017-1201-9_10.
[25] Jorge Picado and Ales Pultr. Frames and Locales - Topology without points. Frontiers in Mathematics. Birkhäuser, 2012. doi:10.1007/978-3-0348-0154-6.
[26] Kimmo I. Rosenthal. Quantales and Their Applications. Pitman Re- search Notes in Mathematics Series. Longman Scientific & Technical, 1990.
Bibtex
@article{sacscuza:georgescu2024hocq, title={Higher Order mz-elements in Coherent Quantales}, author={G. Georgescu}, journal={Scientific Annals of Computer Science}, volume={34}, number={2}, organization={Alexandru Ioan Cuza University, Ia\c si, Rom\^ania}, year={2024}, pages={163-187}, publisher={Alexandru Ioan Cuza University Press, Ia\c si}, doi={10.47743/SACS.2024.2.163} }