Published in Volume XXXIV, Issue 2, 2024, pages 163-187, doi: 10.47743/SACS.2024.2.163

Authors: G. Georgescu

Abstract

The mz-elements of a coherent quantale have recently been de- fined by the author as an abstraction of the mz-ideals of a unital commutative ring.

Having as its starting point the Dube and Ighedo recent paper on higher order ideals in ring theory, this paper deals with the higher order mz-elements of a coherent quantale A. For each natural number n we define the mzn-elements of A, so we obtain an ascending sequence that covers the set of all higher order mz-elements. We obtain a lot of properties of this sequence. In particular, the stationarity of the sequence is studied. Another category of results investigates how the coherent quantale morphisms preserve such properties.

Full Text (PDF)

References

[1] Dan D. Anderson. Abstract commutative ideal theory without chain conditions. Algebra Universalis, 6:131–145, 1976. doi:10.1007/BF02485825.

[2] Jimmy T. Arnold. Power series rings with finite Krull dimension. Indiana University Mathematics Journal, 31(6):897–911, 1982. URL: http://www.jstor.org/stable/24893282.

[3] Michael F. Atiyah and Ian G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley-Longman, 1969. doi:10.1201/9780429493638.

[4] Ali Benhissi and Ahmed Maatallah. A question about higher order z-ideals in commutative rings. Quaestiones Mathematicae, 43(8):1155– 1157, 2020. doi:10.2989/16073606.2019.1601647.

[5] Garrett Birkhoff. Lattice Theory, 3rd edition, volume 25 of American Mathematical Society Colloquium Publications. 1967.

[6] Daniela Cheptea and George Georgescu. Boolean lifting property in quantales. Soft Computing, 24(8):6169–6181, 2020. doi:10.1007/S00500-020-04752-8.

[7] Robert P. Dilworth. Abstract commutative ideal theory. Pacific Journal of Mathematics, 12(2):481–498, 1962. doi:10.2140/pjm.1962.12.481.

[8] Themba Dube and Amartya Goswami. On z-elements of multiplicatice lattices. CoRR, abs/2405.11670, 2024. arXiv:2405.11670.

[9] Themba Dube and Oghenetega Ighedo. Higher order z-ideals in com- mutative rings. Miskolc Mathematical Notes, 17(1):171–185, 2016. doi:10.18514/MMN.2016.1686.

[10] Patrik Eklund, Javier Gutiérrez Garcı́a, Ulrich Höhle, and Jari Kortelainen. Semigroups in complete lattices : Quantales, modules and related topics. Number 54 in Developments in Mathematics. 2018. doi:10.1007/978-3-319-78948-4.

[11] Alberto Facchini, Carmelo Antonio Finocchiaro, and George Janelidze. Abstractly constructed prime spectra. Algebra Universalis, 83:1–38, 2022. doi:10.1007/s00012-021-00764-z.

[12] George Georgescu. Some classes of quantale morphisms. Journal of Algebra, Number Theory, Advances and Applications, 24(2):111–153, 2021. doi:/10.18642/jantaa_7100122188.

[13] George Georgescu. mz -elements in coherent quantales. Fuzzy Sets and Systems, 476:108789, 2024. doi:10.1016/J.FSS.2023.108789.

[14] Oghenetega Ighedo and Warren Wm. McGovern. On the lattice of z- ideals of a commutative ring. Topology and its Applications, 273:106969, 2020. doi:10.1016/j.topol.2019.106969.

[15] Peter T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982.

[16] Carl W. Kohls. Ideals in rings of continuous functions. Fundamenta Mathematicae, 45(1):28–50, 1958. URL: http://eudml.org/doc/213468.

[17] Ahmed Maatallah and Ali Benhissi. Higher order z-ideals of special rings. Beiträge zur Algebra und Geometrie, 63(1):167–177, 2022. doi:10.1007/s13366-020-00553-0.

[18] C. S. Manjarekar and A. N. Chavan. z-elements and zj -elements in multiplicative lattices. Palestine Journal of Mathematics, 8(1):138–147, 2019.

[19] Jorge Martinez. Abstract ideal theory. Ordered Algebraic Structures, Lecture Notes in Pure and Applied Mathematics, 99:125–138, 1985.

[20] Jorge Martinez and Eric R. Zenk. When an algebraic frame is regular. Algebra Universalis, 50:231–257, 2003. doi:10.1007/s00012-003-1841-1.

[21] Gordon Mason. z-ideals and prime ideals. Journal of Algebra, 26(2):280– 297, 1973. doi:10.1016/0021-8693(73)90024-0.

[22] Christopher J. Mulvey. &. Supplemento ai Rendiconti del Circolo matematico di Palermo Serie II, 12:99–104, 1986.

[23] Tomasz Kowalski Nikolaos Galatos, Peter Jipsen and Hiroakira Ono. Residuated Lattices: An Algebraic Glimpse at Structural Logics, volume 151 of Studies in Logic and The Foundation of Mathematics. Elsevier, 2007.

[24] Jan Paseka and Jiřı́ Rosický. Quantales. In Bob Coecke, David Moore, and Alexander Wilce, editors, Current Research in Operational Quantum Logic: Algebras, Categories, Languages, volume III, pages 245–262. Springer Netherlands, 2000. doi:10.1007/978-94-017-1201-9_10.

[25] Jorge Picado and Ales Pultr. Frames and Locales - Topology without points. Frontiers in Mathematics. Birkhäuser, 2012. doi:10.1007/978-3-0348-0154-6.

[26] Kimmo I. Rosenthal. Quantales and Their Applications. Pitman Re- search Notes in Mathematics Series. Longman Scientific & Technical, 1990.

Bibtex

@article{sacscuza:georgescu2024hocq,
  title={Higher Order mz-elements in Coherent Quantales},
  author={G. Georgescu},
  journal={Scientific Annals of Computer Science},
  volume={34},
  number={2},
  organization={Alexandru Ioan Cuza University, Ia\c si, Rom\^ania},
  year={2024},
  pages={163-187},
  publisher={Alexandru Ioan Cuza University Press, Ia\c si},
  doi={10.47743/SACS.2024.2.163}
}