Published in Volume XXXIV, Issue 2, 2024, pages 139-162, doi: 10.47743/SACS.2024.2.139

Authors: A.A. Estaji, T. Haghdadi

Abstract

Let ℛ+ (Lτ) denote the nonnegative τ-real-continuous function on a topoframe Lτ. We introduce the notion of z-ideals and maximal ideals in the semiring ℛ+ (Lτ) and state some results about them. Also, we show that the topoframe Lτ is a P-topoframe if and only if the semiring ℛ+ (Lτ) is a regular semiring.

Full Text (PDF)

References

[1] Sudip Kumar Acharyya, Kshitish Chandra Chattopadhyay, and Gour Gopal Ray. Hemirings, congruences and the Stone-Cech compactification. Bulletin of the Belgian Mathematical Society - Simon Stevin, 67:21–35, 1993.

[2] Sudip Kumar Acharyya, Kshitish Chandra Chattopadhyay, and Gour Gopal Ray. Hemirings, congruences and the Hewitt realcompactification. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2(1):47 – 58, 1995. doi:10.36045/bbms/1103408774.

[3] Pronay Biswas, Sagarmoy Bag, and Sujit Sardar. z-congruences and topologies on C + (X). Positivity, 28:Article 32, 2024. doi:10.1007/s11117-024-01049-0.

[4] Ali Akbar Estaji and Mostafa Abedi. On regularity and injectivity of the ring of real-continuous functions on a topoframe. Algebra universalis, 82:Article 60, 2021. doi:10.1007/s00012-021-00753-2.

[5] Ali Akbar Estaji and Toktam Haghdadi. z-ideals and z-congruences on semiring R+ (L). Categories and General Algebraic Structures with Applications, (submitted).

[6] Ali Akbar Estaji, Abolghasem Karimi Feizabadi, and Mohammad Zarghani. The ring of real-continuous functions on a topoframe. Categories and General Algebraic Structures with Applications, 4(1):75–94, 2016.

[7] Ali Akbar Estaji, Abolghasem Karimi Feizabadi, and Mohammad Zarghani. Zero elements and z-ideals in modified pointfree topology. Bulletin of the Iranian Mathematical Society, 43(7):2205–2226, 2017.

[8] Ali Akbar Estaji and Maryam Taha. z-ideals in the real continuous function ring R(Lτ ). Bulletin of the Iranian Mathematical Society, 46:37–51, 2020. doi:10.1007/s41980-019-00239-x.

[9] Jonathan S. Golan. Semirings and their Applications. Springer Netherlands, 1999. doi:10.1007/978-94-015-9333-5.

[10] Song-chol Han. k-congruences and the zariski topology in semirings. Hacettepe Journal of Mathematics and Statistics, 50(3):699–709, 2021. doi:10.15672/hujms.614688.

[11] Udo Hebisch and Hanns Joachim Weinert. Semirings. World Scientific, 1998. doi:10.1142/3903.

[12] Gordon Mason. z-ideals and prime ideals. Journal of Algebra, 26(2):280– 297, 1973. doi:10.1016/0021-8693(73)90024-0.

[13] Rostam Mohammadian. Positive semirings. Journal of Advanced Mathematical Modeling, 3(2):103–125, 2014.

[14] Parthasarathi Mukhopadhyay. Characterization of regular semirings. Matematički Vesnik, 48(206):83–85, 1996.

[15] Mridul Kanti Sen and Samir Bandyopadhyay. Structure space of a semi-algebra over a hemiring. Kyungpook Mathematical Journal, 33(1), 1993.

Bibtex

@article{sacscuza:estaji2024zsr,
  title={$z$-ideals  in the  semiring  $\mathcal{R}^+(L_{\tau})$},
  author={A.A. Estaji, T. Haghdadi},
  journal={Scientific Annals of Computer Science},
  volume={34},
  number={2},
  organization={Alexandru Ioan Cuza University, Ia\c si, Rom\^ania},
  year={2024},
  pages={139-162},
  publisher={Alexandru Ioan Cuza University Press, Ia\c si},
  doi={10.47743/SACS.2024.2.139}
}