Published in Volume XXXIV, Issue 2, 2024, pages 139-162, doi: 10.47743/SACS.2024.2.139
Authors: A.A. Estaji, T. Haghdadi
Abstract
Let ℛ+ (Lτ) denote the nonnegative τ-real-continuous function on a topoframe Lτ. We introduce the notion of z-ideals and maximal ideals in the semiring ℛ+ (Lτ) and state some results about them. Also, we show that the topoframe Lτ is a P-topoframe if and only if the semiring ℛ+ (Lτ) is a regular semiring.
References
[1] Sudip Kumar Acharyya, Kshitish Chandra Chattopadhyay, and Gour Gopal Ray. Hemirings, congruences and the Stone-Cech compactification. Bulletin of the Belgian Mathematical Society - Simon Stevin, 67:21–35, 1993.
[2] Sudip Kumar Acharyya, Kshitish Chandra Chattopadhyay, and Gour Gopal Ray. Hemirings, congruences and the Hewitt realcompactification. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2(1):47 – 58, 1995. doi:10.36045/bbms/1103408774.
[3] Pronay Biswas, Sagarmoy Bag, and Sujit Sardar. z-congruences and topologies on C + (X). Positivity, 28:Article 32, 2024. doi:10.1007/s11117-024-01049-0.
[4] Ali Akbar Estaji and Mostafa Abedi. On regularity and injectivity of the ring of real-continuous functions on a topoframe. Algebra universalis, 82:Article 60, 2021. doi:10.1007/s00012-021-00753-2.
[5] Ali Akbar Estaji and Toktam Haghdadi. z-ideals and z-congruences on semiring R+ (L). Categories and General Algebraic Structures with Applications, (submitted).
[6] Ali Akbar Estaji, Abolghasem Karimi Feizabadi, and Mohammad Zarghani. The ring of real-continuous functions on a topoframe. Categories and General Algebraic Structures with Applications, 4(1):75–94, 2016.
[7] Ali Akbar Estaji, Abolghasem Karimi Feizabadi, and Mohammad Zarghani. Zero elements and z-ideals in modified pointfree topology. Bulletin of the Iranian Mathematical Society, 43(7):2205–2226, 2017.
[8] Ali Akbar Estaji and Maryam Taha. z-ideals in the real continuous function ring R(Lτ ). Bulletin of the Iranian Mathematical Society, 46:37–51, 2020. doi:10.1007/s41980-019-00239-x.
[9] Jonathan S. Golan. Semirings and their Applications. Springer Netherlands, 1999. doi:10.1007/978-94-015-9333-5.
[10] Song-chol Han. k-congruences and the zariski topology in semirings. Hacettepe Journal of Mathematics and Statistics, 50(3):699–709, 2021. doi:10.15672/hujms.614688.
[11] Udo Hebisch and Hanns Joachim Weinert. Semirings. World Scientific, 1998. doi:10.1142/3903.
[12] Gordon Mason. z-ideals and prime ideals. Journal of Algebra, 26(2):280– 297, 1973. doi:10.1016/0021-8693(73)90024-0.
[13] Rostam Mohammadian. Positive semirings. Journal of Advanced Mathematical Modeling, 3(2):103–125, 2014.
[14] Parthasarathi Mukhopadhyay. Characterization of regular semirings. Matematički Vesnik, 48(206):83–85, 1996.
[15] Mridul Kanti Sen and Samir Bandyopadhyay. Structure space of a semi-algebra over a hemiring. Kyungpook Mathematical Journal, 33(1), 1993.
Bibtex
@article{sacscuza:estaji2024zsr, title={$z$-ideals in the semiring $\mathcal{R}^+(L_{\tau})$}, author={A.A. Estaji, T. Haghdadi}, journal={Scientific Annals of Computer Science}, volume={34}, number={2}, organization={Alexandru Ioan Cuza University, Ia\c si, Rom\^ania}, year={2024}, pages={139-162}, publisher={Alexandru Ioan Cuza University Press, Ia\c si}, doi={10.47743/SACS.2024.2.139} }